MATHEMATICS WORK SHEETS S.S.C

Z.P.H.SCHOOL

<u>PAPER I</u>: REAL NUMBERS, SETS, POLYNAMIALS, LINEAR EQUATIONS TWO VARIABLES, QUADRATIC EQUATIONS, PROGRESSION, MENSURATION.

<u>PAPER II:</u> CO-ORDINATE GEOMETRY, SIMILAR TRIANGLES, TANGENTS AND SECANT OF CIRCLES, TRIGONOMETRY, APPLICATION OF TRIGONAMETRY, PROBABILITY, STATISTICS

These rules let you test if one number is divisible by another, without having to do too much calculation

	without having to do t	oo mach calculation
Divisible by:	If:	Examples:
2	The last (UNIT)digit is even (0,2,4,6,8)	128 is 129 is not
3	The sum of the digits is divisible by 3	381 (3+8+1=12, and 12÷3 = 4) Yes 217 (2+1+7=10, and 10÷3 = 3 ¹ / ₃) No
4	The last 2 digits are divisible by 4	1312 is (12÷4=3) 7019 is not
5	The last digit is 0 or 5	175 is 809 is not
6	The number is divisible by both 2 and 3	114 (it is even, and 1+1+4=6 and 6÷3 = 2)Yes 308 (it is even, but 3+0+8=11 and 11÷3 = 3 ² / ₃) No
7	If you double the last digit and subtract it from the rest of the number and the answer is: 0, or divisible by 7 (Note: you can apply this rule to that answer again if you want)	672 (Double 2 is 4, 67-4=63, and 63÷7=9)Yes 905 (Double 5 is 10, 90-10=80, and 80÷7=11 ³ / ₇) No
8	The last three digits are divisible by 8	109816 (816÷8=102) Yes 216302 (302÷8=37 ³ / ₄) No
9	The sum of the digits is divisible by 9 (Note: you can apply this rule to that answer again if you want)	1629 (1+6+2+9=18, and again, 1+8=9) Yes 2013 (2+0+1+3=6) No
10	The number ends in 0	220 is 221 is not
11	If you sum every second digit and then subtract all other digits and the answer is: • 0, or • divisible by 11	1364 ((3+4) - (1+6) = 0) Yes 3729 ((7+9) - (3+2) = 11) Yes 25176 ((5+7) - (2+1+6) = 3) No
12	The number is divisible by both 3 <i>and</i> 4	648 (By 3? 6+4+8=18 and 18÷3=6 Yes. By 4? 48÷4=12 Yes) Yes 524 (By 3? 5+2+4=11, 11÷3= 3 ² / ₃ No. Don't need to check by 4.) No

Which number is divisible or not by 2,3,4,5,6,7,8,9,10,11,12

If divisible by number put yes or $\sqrt{}$ / No or X

S.No	Number	Divisibility										
		2	3	4	5	6	7	8	9	10	11	12
1	128											
2	275											
3	990											
4	1,586											
5	2,856											
6	3,060											
7	6,686											
8	4,06,839											
9	4,29,714											
10	6,39,210											
11	2,104											
12	1,416											
13	1,273											
14	2,621											
15	3,974											
16	26,346											
17	4,32,765											
18	61,809											
19	16,049											
20	14,723											
21	14,560											
22	21,084											
23	5,31,048											
24	7,26,352											
25	26,72,032											
26	71,38,965											
27	2,13,401											
28	2,22,222											
29	98,76,543											
30	2,34,32,422											
30	_,,,								<u> </u>			

S.NO	PROBLEM	solution	S.NO	PROBLEM	solution
1	128	$2x2x2x2x2x2x2 = 2^7$	1	140	
2	512		2	156	
3	1024		3	3825	
4	256		4	5005	
5	64		5	7429	
6	243		6	21252	
7	625		7	1771	
8	343		8	5313	
9	900		9	10626	
10	270		10	8232	
11	196		11	21252	
12	12	$2 \times 2 \times 3 = 2^2 \times 3^1$	12	27300	
13	18		13	2000	
14	66		14	15000	
15	455		15	3025	
16	400		16	4225	
17	600		17	7225	
18	100		18	1225	
19	1000		19	729	
20	108		20	676	
21	657		21	1728	
22	306		22	729	
23	375		23	525	
24	875		24	2025	
25	3125		25	2048	
26	441		26	4096	
27	961		27	8192	
28	196		28	3120	
29	256		29	1234	
30	112		30	6555	
30	112		30	6555	

ZPHS N.R.PALLI

PAGE 4

K.SREENIVASA RAJU

Euclid's Division Lemma: Given positive integers a and b, there exist unique pair of integers q and r satisfying a = bq +r , $0 \le r < b$

Euclid's Division Lemma algorithm is a technique to compute the Highest Common Factror (H.C.F/G.C.D) of two given integers.

6316		T	T	T	T	T
S.NO	a	b	a = bq + r	q	r	H.C.F
1	a= 13	b =3	13= 3 x 4 + 1	4	1	
	4	1	3 = 1x3 + 0	1	0	1
2	a= 80	b =8	$80 = 8 \times 10 + 0$	10	0	8
3	a= 96	b =8	96= <mark>8</mark> X 12 + 0	12	0	8
4	a= 125	b =5				
5	a= 132	b =11				
6	a= 60	b =40				
7	a= 100	b =60				
	60	40				
	40	20				
8	70	50				
	50	20				
	20	10				
9	96	72				
10	550	300				
11	2015	1860				
12	900	270				
13	38220	196				
14	2032	1651				
		1		1	<u> </u>	1

ZPHS N.R.PALLI

PAGE 5

K.SREENIVASA RAJU

	Express fraction in decimal form							
1	0.5	7	1		1			
$\overline{2}$		$\overline{16}$	10		<u>2</u>			
1		2	3		1			
3		3	10		$\overline{4}$			
1	0.25	10	27		1			
$\frac{1}{4}$		7	25		8			
1	0.20	1	7		1			
5		17	<u>6</u>		16			
1		1	5		1			
<u>-</u>		19	<u>12</u>		32			
1		1	3		1			
7		$\frac{\overline{2}}{2}$	5		- 5			
1		1	11		1			
8		$\overline{2^2}$	<u>10</u>		25			
1		1	13		1			
9		$\overline{5 X 2}$	10		125			

Irrational numbers are denoted by 'S' or 'Q'.

irrational numbers are can't be represented in p/q form. That is $\sqrt{2} \neq p/q$ (for any integers p and q, q \neq 0).

 $\sqrt{3}$ = 1.7320508075689..... $\sqrt{5}$ = 2.2360679774998..... These are non-terminating, non-recurring decimals

Examples of irrational numbers (1) $\sqrt{2.1356217528...}$, (2) $\sqrt{2}$, $\sqrt{3}$, π , etc. If 'n' is a natural number other than a perfect square then \sqrt{n} is an irrational number

The 5th Century BC the Pythagorean in Greece, the follower of the famous mathematician and philosopher Pythagoras, were the first to discover the numbers which were not rationals. These numbers are called irrational numbers. The Pythagoreans proved that $\sqrt{2}$ is irrational number.

ater Theodorus of Cyrene showed that $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$, $\sqrt{13}$, $\sqrt{14}$, $\sqrt{15}$ and $\sqrt{17}$ are also irrational numbers.

There is a reference of irrationals in calculation of square roots in Sulba Sutra (800 BC).

	,			,	,	1	,		
√1 =1	√2	√3	√4=2	√5	√6	√7	√8	$\sqrt{9} = 3$	√10
rational	Irrational	Irrational	rational	Irrational	Irrational	Irrational	Irrational	rational	Irrational
√11	√12	√13	√14	√15	√16	√17	√18	√19	√20
√21	√22	√23	√24	√25	√26	√27	√28	√29	√30
√31	√32	√33	√34	√35	√36	√37	√38	√39	√40
√41	√42	√43	√44	√45	√46	√47	√48	√49	√50
√51	√52	√53	√54	√55	√56	√57	√58	√59	√60
√61	√62	√63	√64	√65	√66	√67	√68	√69	√70
√71	√72	√73	√74	√75	√76	√77	√78	√79	√80
√81	√82	√83	√84	√85	√86	√87	√88	√89	√90
√91	√92	√93	√94	√95	√96	√97	√98	√99	√100
			-						

Rational can write Q,

Irrational can write Q' or S

	Find the LCM an	d H	CF of 12 and 18 by	the p	orime	facto	rization method.
Number	Prime factorization	Pi	roduct of powers of prim	es.			
12	2 x 2 x 3	2 ²	x 3 ¹				
18	2 x 3 x 3		x 3 ²				
	HCF (12, 18)		$x 3^1 = 6$		Product of the smallest power of each common		
	LCM (12, 18)						me factors in the numbers. ct of the greatest power of each
prime factors, in the numbers.							
HCI	F (12, 18) x LCM (12,	18)	= 12 x 18, 6		36	=	12 x 18 = 216
<u> </u>			integers a and b				CM (a, b) = a x b.
Find	the LCM and HCF	of t	he following integ method		y app	lying	the prime factorization
(i) 12, 15			mouroc	•		T	
Number	Prime factorizati	on	Product of powers	of prim	es.		
12	2 x 2 x 3		2 ² x 3 ¹				
15	3 x 5		3¹ X 5¹			_	
21	3 x 7		3¹ X 7¹			D 3	act of the smallest
	HCF (12,15, 21)	31 =	3			nct of the smallest power of each common prime factors in the numbers.
	LCM (12,15, 21)	$2^2 \times 3^1 \times 5^1 \times 7^1 =$	420		F	Product of the greatest power of each prime factors, in the numbers.
(ii) 17, 23 Number	, and 29 Prime factorizati		Due dont of morrows of v				
Number	Prime lactorizati	ווכ	Product of powers of p	orimes.			
<u> </u>						Product of	of the smallest power of each common
							prime factors in the numbers. duct of the greatest power of each
(iii) 8, 9 a	nd 25					F	orime factors, in the numbers.
Number	Prime		Product of powers of				
	factorization		primes.	_			
					Pro	oduct of th	ne smallest power of each common
						prin	ne factors in the numbers. t of the greatest power of each
(iv) 72 an	d 108						ne factors, in the numbers.
Number	Prime factorizati	on	Product of powers	of prime	es.		
						Produ	ct of the smallest power of each common
						P	prime factors in the numbers. roduct of the greatest power of each
(v) 306 a	nd 657					<u> </u>	prime factors, in the numbers.
Number	Prime factorizat	ion	Product of pow	ers of p	orimes		
							Product of the smallest power of each common
							prime factors in the numbers. Product of the greatest power of each
K.SREENIVA	ASA PAUL	<u>/1167</u>	27669 7DUC N	D DAI	11		prime factors, in the numbers.
V-SKEENIA	ASA NAJU 94	+10 3	37668 ZPHS N.	n .PAL	<u> </u>		PAGE 7

Rational numbers and their decimal expansions Let us consider the following terminating decimal expressions of some rational numbers:							
Terminating decimal	der the following terminating de	Rational numbers	prime factorize the numerator and denominator	simplest rational form			
0.375	$0.375 \times \frac{1000}{1000} = \frac{375}{1000}$	$\frac{375}{10^3}$	$\frac{375}{10^3} = \frac{3X5^3}{2^3x5^3}$	$\frac{3}{2^3} = \frac{3}{8}$			
1.04	$1.04 \times \frac{100}{100} = \frac{104}{100}$	$\frac{104}{10^2}$	$\frac{104}{10^2} = \frac{2^3 X 13}{2^2 X 5^2} = \frac{2^1 X 13}{5^2}$	$\frac{2^1X13}{5^2} = \frac{26}{25}$			
0.0875	$0.0875 \times \frac{10000}{10000} = \frac{0875}{10000}$	$\frac{875}{10^4}$	$\frac{875}{10^4}$				
12.5	12.5 x $\frac{10}{10}$ = $\frac{125}{10}$	$\frac{125}{10^1}$	$\frac{125}{10^1}$				
0.00025	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{25}{10^5}$	25 10 ⁵				
15.265							
0.1255							
0.4							
23.34							
1215.8							
0.7							
0.84							
0.875							
0.75							
0.175							
0.275							
0.575							
0.775							
K.SREENIVASA F	RAJU 9441637668 ZPF	IS N.R.PALLI		PAGE 8			

With out actual division, state whether the following rational numbers are terminating or non-terminating, repeating decimals.

x = p/q be a rational number, such that the prime factorization of q is of the form $2^n \ 5^m$, where n, m are non-negative integers. Then x has a decimal expansion which terminates. Other wise non terminating decimal.

(i)	$\frac{16}{125} = \frac{16}{5X5X5} = \frac{16}{5^3} = $ Terminating decimal.
(ii)	$\frac{25}{32} = \frac{25}{2X2X2X2X2} = \frac{25}{2^5} = Terminating decimal.$
(iii)	$\frac{100}{81}$ = $\frac{100}{3X3X3X3}$ = $\frac{100}{3^4}$ = Non-terminating, repeating decimal.
(iv)	$\frac{41}{75} = \frac{41}{3X5X5} = \frac{41}{3X5^2} = $ Non-terminating, repeating decimal.
(v)	$\frac{13}{3125}$ =
(vi)	$\frac{11}{12} =$
(vii)	$\frac{64}{455} =$
(viii)	$\frac{15}{1600}$ =
(ix)	$\frac{29}{343}$ =
(x)	$\frac{23}{2^3.5^2}$ =
(xi)	$\frac{129}{2^2.5^7.7^5} =$
(xii)	$\frac{9}{15}$ =
(xiii)	$\frac{36}{100}$ =
(xiv)	$\frac{77}{210} =$
(xv)	3/4 =
(xvi)	7/25 =
(xvii)	51/64=
(xviii)	14/23=
(xix)	80/81=

K.SREENIVASA RAJU

<u>Logarithm:</u> if N, $a \neq 1$ are any two positive real numbers and for some real x $a^x = N$ then x is said to be the logarithm of N to the base a. It is written as $x = \log_a N$.

EXPONENTIONAL FORM \Leftrightarrow LOGARITHAM FORM a	x = N	\Leftrightarrow	$x = \log_a N$
--	-------	-------------------	----------------

	PUNENTI	UNAL FURM ⇔	LUC	JAKI I HAN	I FURIVI	u	- IN ⇔	$x - \log_a N$
S.NO	EXPONENTION AL FORM	LOGARITHAM FORM	S.NO	EXPONENTION AL FORM	LOGARITHAM FORM	S.NO	EXPONENTIONAL FORM	LOGARITHAM FORM
1	$2^2 = 4$	$2 = \log_2 4$	1		log ₁₃ 169 = 2	1	$2^0 = 1$	
2	$2^3 = 8$	$3 = \log_2 8$	2		log ₁₂ 144 = 2	2	3 ⁰ = 1	
3	2 ⁴ = 16		3		log ₁₁ 121 = 2	3	$4^0 = 1$	
4	2 ⁵ = 32		4		log ₁₀ 1000 = 3	4	5 ⁰ = 1	
5	$2^6 = 64$		5		log ₁₀ 100 = 2	5	$6^0 = 1$	
6	2 ⁷ = 128		6		log ₉ 729 = 3	6	7 ⁰ = 1	
7	2 ⁸ = 256		7		log ₉ 81 = 2	7	$8^0 = 1$	
8	2 ⁹ = 512		8	8 ³ = 512	log ₈ 512 = 3	8	$9^0 = 1$	
9	$2^{10} = 1024$		9		log ₈ 64 = 2	9	$10^0 = 1$	
10	$3^2 = 9$		10		log ₇ 343 = 3	10	11 ⁰ = 1	
11	3 ³ =27		11		log ₇ 49 = 2	11	12 ⁰ = 1	
12	3 ⁴ = 81		12		log ₆ 216 = 3	12	$13^0 = 1$	
13	3 ⁵ = 243		13		log ₆ 36 = 2	13	14 ⁰ = 1	
14	$4^2 = 16$		14		log ₅ 625 = 4	14	15 ⁰ = 1	
15	$4^3 = 64$		15		log ₅ 125 = 3	15	16 ⁰ = 1	
16	4 ⁴ = 256		16		log ₅ 25 = 2	16		log ₂ 2 = 1
17	$5^2 = 25$		17		log ₄ 256 = 4	17		log ₃ 3 =1
18	5 ³ = 125		18		log ₄ 64 = 3	18		log ₄ 4 = 1
19	5 ⁴ = 625		19		log ₄ 16 = 2	19		log ₅ 5 = 1
20	$6^2 = 36$		20		log ₃ 243 = 5	20		log ₆ 6 = 1
21	$6^3 = 216$		21		log ₃ 81 = 4	21		log ₇ 7 = 1
22	7 ² = 49		22		log ₃ 27 = 3	22		log ₈ 8 = 1
23	7 ³ = 343		23		log ₃ 9 = 2	23		log ₉ 9 =1
24	8 ² = 64		24		log ₂ 1024 = 10	24		log ₁₀ 10 = 1
25	8 ³ = 512		25		log ₂ 512 = 9	25		log ₁₁ 11 = 1
26	9 ² = 81		26		log ₂ 256 = 8	26		log ₁₂ 12 = 1
27	9 ³ = 729		27		log ₂ 128 = 7	27		log ₁₃ 13 = 1
28	10 ² = 100		28		log ₂ 64 = 6	28		log ₁₄ 14 = 1
29	10 ³ = 1000		29		log ₂ 32 = 5	29		log ₁₅ 15 = 1
30	11 ² = 121		30		log ₂ 16 = 4	30		$\log_a a = 1$
	<u> </u>							

ZPHS N.R.PALLI

PAGE 10

K.SREENIVASA RAJU

LAWS OF LOGARITHMS

1.The first law of logarithms $\log_a(x, y) = \log_a(x \times y) = \log_a x + \log_a y$ x, y and a are positive real numbers a $\neq 1$

(NOTE: A NUMBER CAN WRITE PRODUCT OF PRIME FACTORES)

	(NOIL . AT	NUMBER CAN WRITE	TRODUCT OF TRIME TACTORES)
1	$\log_a(x.y)$	$\log_a(x\times y)$	$\log_a x + \log_a y$
2	$\log_a 15$	$\log_a (3 \times 5)$	$\log_a 3 + \log_a 5$
3	$\log_a 25$		
4	log ₃ 35		
5	log ₁₀ 77		
6			$log_{10} 3 + log_{10} 19$
7			$\log_a 7 + \log_a 7$
8			$log_{10}7 + log_{10}13$
9			$\log_a 11 + \log_a 13$
10			$\log_a 13 + \log_b 19$
11	$\log_x(a.b)$		
12	$\log_2(x,y)$		
13	$\log_a(xyz)$	$\log_a(x. y.z)$	$\log_a x + \log_a y + \log_a z$
14	$\log_a(30)$	$\log_a(2.3.5)$	$\log_a 2 + \log_a 3 + \log_a 5$
15	$\log_a(42)$		
16	$\log_a(105)$		
17	$\log_a(165)$		
18	$\log_a(pqr)$		
19	$\log_{10}(pqr)$		
20			$\log_a 3 + \log_a 7 + \log_a 11$
21			$\log_{10} 5 + \log_{10} 7 + \log_{10} 11$
22			$\log_a 11 + \log_a 13 + \log_a 7$
23			$\log_4 7 + \log_4 3 + \log_4 5$
24			$\log_a 3 + \log_a 13 + \log_a 5$
25			$\log_a 2 + \log_b 3 + \log_c 5$
	l	ı	

ZPHS N.R.PALLI

PAGE 11

K.SREENIVASA RAJU

2.	The seco	<mark>nd law</mark> of logarithms	lo	$g_a(\frac{x}{y}) = \log$	$g_a x - \log_a y$
		x.y and a are positive	e rea	al numbers a	a ≠1
1	$\log_a(\frac{x}{y})$	$\log_a x - \log_a y$	1	$\log_{x}(\frac{a}{b})$	$\log_x a - \log_x b$
2	$\log_a(\frac{5}{7})$		2		$\log_x 11 - \log_x 13$
3	$\log_a(\frac{11}{7})$		3		$\log_x 13 - \log_x 17$
4	$\log_a(\frac{13}{2})$		4		$\log_x 23 - \log_x 29$
5	$\log_a(\frac{2}{17})$		5		$\log_{10} a - \log_{10} b$
6	$\log_a(\frac{11}{17})$		6		$\log_{10} 11 - \log_{10} 2$
7	$\log_a(\frac{23}{34})$		7		$\log_{10} 17 - \log_{10} 3$
8	$\log_7(\frac{21}{29})$		8		log ₇ 17 - log ₇ 3
9	$\log_7(\frac{1}{29})$		9		log ₂ 17 - log ₂ 3
10	$\log_7(\frac{23}{11})$		10		log ₇ 17 - log ₂ 3
11	$\log_a(\frac{xz}{y})$	$\log_a x + \log_a z - \log_a y$	11	$\log_{x}(\frac{ab}{cd})$	$ \log_x a + \log_x b \\ -\log_x c - \log_x d $
12	$\log_a(\frac{zy}{x})$				$-\log_{\chi} \mathfrak{c} - \log_{\chi} \mathfrak{a}$
13	$\log_{x}(\frac{ab}{c})$ $\log_{y}(\frac{ac}{b})$		12	$\log_{y}(\frac{ac}{bd})$	
14	$\log_y(\frac{ac}{b})$		12		
15		$\log_a 2 + \log_a 3 - \log_a 7$	13	$\log_{10}(\frac{ad}{bc})$	
16		$\log_a 3 + \log_a 7 - \log_a 2$	13		
17		$\log_2 x + \log_2 z - \log_2 y$	14	$\log_{x}(\frac{cd}{ab})$	
18		$\log_a 2 + \log_a 11 - \log_a 7$	14		
19		$\log_5 2 + \log_5 11 - \log_5 13$	15	$\log_{x}(\frac{ab}{cd})$	
20	$\log_y(\frac{a}{bc})$		13		
21	$\log_a(\frac{x}{yz})$		16		$\log_x 7 + \log_x 11$
22		$\log_a x - \log_a z - \log_a y$	10		$-\log_x 3 - \log_x 5$
23		$\log_a 19 - \log_a 2 - \log_a 3$	17		$\log_x 3 + \log_x 11$
24		$-\log_7 x + \log_7 z + \log_7 y$	17		$-\log_x 5 - \log_x 2$
25		$\log_a x - \log_b z - \log_c y$	18		$\log_x 2 + \log_x 9$ $-\log_x 5 - \log_x 2$
K.SRI	EENIVASA RAJU	9441637668 ZPHS	N.R .P	ALLI	PAGE 12

	3. T	The <mark>third law</mark> of log			- 00	- Cu
1	$\log_a x^m$	x. y and a are p m. $\log_a x$	OSITI	ve re	$\frac{\log_x a^m}{\log_x a^m}$	$\mathbf{S} \mathbf{a} \neq \mathbf{I}$ $\mathbf{m} \cdot \mathbf{log}_{x} \mathbf{a}$
2	$\log_2 3^m$			2	$\log_x a^n$	
3	$\log_a x^5$			3	$\log_{10} a^n$	
4	$\log_a z^7$			4	$\log_7 b^n$	
5	$\log_{10} 5^7$,		5	$\log_2 d^n$	
6	$\log_a y^{10}$)		6	log ₃ 10 ⁿ	
7		$5 \cdot \log_a z$		7		$m \cdot log_a(xy)$
8		$2 \cdot \log_a y$		8		$2 \cdot \log_a(xyz)$
9		$4 \cdot \log_a 2$		9		$5 \cdot \log_a(\frac{x}{y})$
10		$3 \cdot \log_a 5$		10		$3 \cdot \log_a(\frac{a}{bc})$
1	343		and th			0.10 % 7 010 % 5
∥'	$\log \frac{343}{125}$	log 343 – log 125 (by 2 nd law)	IC	og 7°	– log 5 ³	3 log 7 – 3log 5 (by 3 rd law)
2	$\log \frac{128}{625}$					
3	$\log x^2 y^3 z^4$					
4	$\log \frac{p^2q^3}{r}$					
5	log 1000					
6	$\log \sqrt{\frac{x^3}{y^2}}$					
7						log 10 + 2 log 3 - log 2
8						2 log 3 - 3 log 2
9						2log3 + 2 log5 – 5log2
10						2log3 + 3 log5 – 5log2
11	$a^x = N \Rightarrow x$	$= \log_a N$ $a^{\log_a N} = N$		2 log	52 5 =	5 log ₅ A =
12	2 ^{2+log₂ 5}	$5 = 2^2 \times 2^{\log_2 3}$		2 2+	log ₂ 3 =	
L		$= 4 \times 5 = 2$	•			
K.SR	EENIVASA RAJU	9441637668	ZPHS	S N.R.	PALLI	PAGE 13

	Roster form = LIST FORM,	Set Builder form = RULE FORM		
	Problem	Roster form	Set Builder form	
1	A= The set of all natural numbers which divide 42	A = {1, 2, 3, 6, 7, 14, 21,42}	A = {x : x is a natural number which divides 42}	
2	B= The set of natural numbers which are less than 10.	B = {1, 2, 3, 4, 5, 6, 7, 8, 9}	B= {x : x is a natural number which is less than 10}	
3	C= the set of all months in a year having 30 days			
4	D is the set of all prime numbers less than 10.			
5	X The colours of the rainbow			
6	letter of the word PRINCIPAL	{P, R, I, N, C, A, L}	{x : x is a letter of the word PRINCIPAL}	
7	positive integer and is a divisor of 18	{1, 2, 3, 6, 9, 18}	{x: x is a positive integer and is a divisor of 18}	
8			B = {x : x is a natural number less than 6}	
9			{x: x is a two-digit natural number such that the sum of its digits is 8}.	
10			{x: x is a prime number which is a divisor of 60}.	
11			{ x : x the set of all letters in the word BETTER}.	
12		{3, 6, 9, 12}		
13		{2, 4, 8, 16, 32}		
14		{5, 25, 125, 625}		
15 16		{1, 4, 9, 25, 100} {1, 2, 3, 6}		
17		{1, 2, 3, 0}	{x: x is an odd natural number less than 10}	
18			{x : x is a letter of the word MATHEMATICS}	
19			{x : x is a natural number and divisor of 6}	
20		V = {a, e, i, o, u}.		
21		$C = \{2, 3, 5, 7, 11\}$		
22	The set of even numbers which are less than 15			
23	The set of all natural numbers which divide	B = {1, 2, 3, 6, 7, 14, 21, 42}	B = {x : x is a natural number which divides 42}	
24	The set of natural numbers which are less than 10	A = {1, 2, 3, 4, 5, 6, 7, 8, 9}	A = $\{x : x \text{ is a natural number which is less than } 10\}.$	
25		{1, 2, 3, 4, 5, 6}.	$\{x: x \text{ is a natural number and } x^2 < 40\}$	

ZPHS N.R.PALLI

PAGE 14

K.SREENIVASA RAJU

9441637668

SETS

A		B
		7
	3	8
	6/	

	T	
	A = { 1,2,3,4,5,6 }	B= { 1,3,6,7,8 }
A∪B	{	}
B∪A	{	}
A∩B	{	}
B∩A	{	}
A - B	{	}
B - A	{	}

	A = { a,b,c,d,e,f }	B= { e,f,g,h }
$A \cup B$	{	}
B∪A	{	}
A∩B	{	}
B∩A	{	}
A - B	{	}
B - A	{	}

	A = {	} B= {	
A∪B	{	}	
B∪A	{	}	
A∩B	{	}	
B∩A	{	}	
A - B	{	}	
B - A	{	}	

В

	A = {	} B= {	}
AUB	{	}	
BUA	{	}	
$A \cap B$	{	}	
$B \cap A$	{	}	
A - B	{	}	
B - A	{	}	

A

	A = {	} B= {
AUB	{	}
BUA	{	}
$A \cap B$	{	}
$B \cap A$	{	}
A - B	{	}
B - A	{	}

NOTE: write elements in your own numbers or alphabet

SETS

	A = { 1,2,3,4 }	B= { 1,3,6,7}
A∪B	{	}
B∪A	{	}
A∩B	{	}
B∩A	{	}
A - B	{	}
B - A	{	}

	A = { a,b,c,d,e }	B= { e,f,g }
A∪B	{	}
B∪A	{	}
A∩B	{	}
B∩A	{	}
A - B	{	}
B - A	{	}

	A = {	} B= { }	
A∪B	{	}	
B∪A	{	}	
A∩B	{	}	
B∩A	{	}	
A - B	{	}	
B - A	{	}	

	A = {	} B= {	}
AUB	{	}	
BUA	{	}	
$A \cap B$	{	}	
B∩A	{	}	
A - B	{	}	
B - A	{	}	

	A = {	} B= { }
AUB	{	}
BUA	{	}
$A \cap B$	{	}
$B \cap A$	{	}
A - B	{	}
B - A	{	}

NOTE: write elements in your own numbers or alphabet

Disjoint sets and subsets

	A = { 2,4,6,8,10	} B= { 1,3,5,7,9 }
A∪B	{	}
B∪A	{	}
A∩B	{	}
B∩A	{	}
A - B	{	}
B - A	{	}

	A = {2,3,5,7,11 }	B= { 4,6,8,9,10 }
A∪B	{	}
B∪A	{	}
A∩B	{	}
B∩A	{	}
A - B	{	}
B - A	{	}

	A = {	} B= {	}
A∪B	{	}	
B∪A	{	}	
A∩B	{	}	
B∩A	{	}	
A - B	{	}	
B - A	{	}	·

	A = {	}	B= {	}
A∪B	{		}	
B∪A	{		}	
A∩B	{		}	
B∩A	{		}	
A - B	{		}	
B - A	{		}	

	A = {	} B= {	}
$A \cup B$	{	}	
B∪A	{	}	
A∩B	{	}	
B∩A	{	}	
A - B	{	}	
B - A	{	}	

K.SREENIVASA RAJU

9441637668

ZPHS N.R.PALLI

PAGE 17

	A = {	} B=	{ }	A = {	} B= {		}
AUB		·					
BUA							
$A \cap B$							
$B \cap A$							
A - B							
B - A							
AUA							
μ							
Α'=μ-Α							
B′=μ-B							
A' U B'							
B' U A'							
A′∩B′							
B'∩ A'							
μ΄							
φ′							
n (A)							
n (B)							
n (AUB)							
n (BUA)							
n (A∩B)							
n (B ∩ A)							
n (A – B)							
n (B – A)							
n (A')							
n (B')							
n (A' U B')							
n (B' U A')							
n (A'∩B')							
n (B' ∩ A')							
n (A' – B')							
n (B' – A')							
n (μ′)							
n (φ')							
.SREENIVASA RAJ	U 9	441637668	ZPHS N.R.PAL	LI		PAGE	18

	A = {	}	B= {	}	A = {	}	B= {	}
AUB								
BUA								
$A \cap B$								
B∩A								
A - B								
B - A								
AUA								
μ								
Α'=μ-Α								
B′=μ-B								
A' U B'								
B' U A'								
A′∩B′								
B'∩ A'								
μ΄								
φ′								
n (A)								
n (B)								
n (AUB)								
n (BUA)								
n (A ∩ B)								
n (B ∩ A)		_						
n (A – B)								
n (B – A)								
n (A')		_						
n (B')								
n (A' U B')								
n (B' U A')								
n (A'∩B')								
n (B' ∩ A')								
n (A' – B')								
n (B' – A')								
n (μ')								
n (ф')								
		0700			numbers or a	labak	o.t	

NOTE: write elements in your own numbers or alphabet

	A = { 1,2,3, 4	}	B= { 3, 4,5,6	}	C = { 1,6,7,8	}
AUB						
BUA						
BUC						
CUB						
AUC						
CUA						
A∩B						
$B \cap A$						
B∩C						
C∩B						
A∩C						
C∩A						
A - B						
B - A						
B - C						
C - B						
A - C						
C - A						
(AUB)UC						
AU(BUC)						
(A ∩ B) ∩ C						
$A \cap (B \cap C)$						
AU (B∩C)						
(A U B) ∩ (A U C)						
A ∩ (B U C)						
(A ∩ B)U (A ∩ C)						
A – (B U C)						
(A - B) ∩ (A - C)						
A - (B ∩ C)						
(A - B) U (A - C)						
A ∩ (B U C)						
(A ∩ B)U (A ∩ C)						
(A U B) − (A ∩ B)						
	F : write eleme	ents in v	our own numbers	s or a	lnhabet	

NOTE: write elements in your own numbers or alphabet

OBOVE DIAGRAM n (A) n (B) n (C) n (B U C) n (C U B) n (A U C) n (CUA) n (A∩B) $n (B \cap A)$ $n (B \cap C)$ $n (C \cap B)$ n (A∩C) $n (C \cap A)$ n (A – B) n (B - A) n (B - C) n (C-B) n (A - C) n (C - A) n (AUBUC) $n (A \cap B \cap C)$ n [A U $(B \cap C)$] $n (A \cup B) \cap (A \cup C)]$ n [A ∩ (B U C)] $n[(A \cap B)U(A \cap C)]$ n [A – (B U C)] $n[(A-B)\cap(A-C)]$ $n[A - (B \cap C)]$ n[(A - B) U (A - C)] n [A ∩ (B U C)] n [(A \cap B)U (A \cap C) $n [(A \cup B) - (A \cap B)]$

μ = {1,2,3,4,5,6,7,8.9,10 } A={1,2,6,8,9 } B={3,4,5,7,10 }								}													
U	Α	В	ф	μ	\cap	Α	В	ф	μ	_	A	В	ф	μ							
A					А					Α											
В					В					В											
ф					ф					ф											
μ					μ					μ											
<u> </u>			<u> </u>	μ= {a,	b,c,d,	e,f,g,	h,I }	1	A =	{a,c,e,g	,۱ }		{b,d,f,	,h }							
U	Α	В	ф	μ	\cap	Α	В	ф	μ		Α	В	ф	μ							
A					A					A											
В					В					В											
φ					ф					ф											
μ					μ					μ											
 μ=	μ= {1,2,3,4,5,6,7,8.9,10 } A={1,2,3,5,6} B={3,4,5,7,10 }																				
Ū			A			В				ф			μ								
Α																					
В																					
ф																					
μ																					
Ľ																					
\cap			A			В	3			ф			μ								
Α																					
В																					
ф																					
μ																					
			_			_			<u> </u>												
-			Α			В				ф			μ								
A																					
В																					
ф																					
μ																					
K.SR	EENIV	ASA RA	JU	9	4416376	68	ZPI	IS N.R	.PALLI				PAG	K.SREENIVASA RAJU 9441637668 ZPHS N.R .PALLI PAGE 22							

write the like terms against given term									
S.NO		Problems		Sum of the like terms	Product of the like terms				
1	7x								
2	8y								
3	5z								
4	Зху								
5	9xyz								
6	3 a								
7	4b								
8	5c								
9	3ab								
10	4bc								
11	2abc								
12	X ²								
13	x²y								
14	x ² y ²								
15	x²y²z								
16	$x^{2}y$ $x^{2}y^{2}$ $x^{2}y^{2}z$ $x^{2}y^{2}z^{2}$ $2xy^{2}z^{3}$								
17	2xy ² z ³								
18	$-x^3y^2z$				ı				
19	x²y³z								
20	$ -x^{3}y^{2}z x^{2}y^{3}z 3x^{3}y^{2}z^{3} x^{2}y^{2}z^{3} 7x^{2}y^{2}z^{3} -x^{2}y^{3} $								
21	$x^2y^2z^3$				ı				
22	7x ² y ² z ³								
23	-x ² y ³								
24	-/								
25	-2prs								
26	-4bc								
27	$ -4bc -7x^2y^2z^3 -x^2y^2z^3 -x^2y^2 -x^2y^2 $								
28	$-x^2y^2z^3$				ı				
29	-x ² y ²								
30	$-x^2y^3z^3$								

			OWING

S.NO	P (X) OR Polynomial	X= 0	X= 1	X= 2	X= 3	X= 4	X= -1	X= -2	X= -3
1	x ² -x-6								
2	x ² +4x+3								
3	6-x-x ²								
4	x² -x-12								
5	x ² -6x+9								
6	x ² -4x+5								
7	x ² +3x-4								
8	x² -1								
9	$x^2 + 5x + 4$								
10	4x ² -3x+ 7								
11	$3x^2 + 5x - 7$								
12	x ² -x+1								
13	x ² -3x+2								
14	x³ -4x								
15	X ³								
16	$\chi^3 - \chi^2$								
17	X ³								
18	X ² -X ³								
19	$x^3 - 5x^2 + 6x$								
20	x ² -2x-3								
21	x ² -5x-6								
22	m ² -3m+1								
23	t ³ -1								
24	3x								
25	$x^2 + 5x + 6$								
26	x ⁴ -16								
27	4x ² +3x-1								
28	x ² -4								
29	x ² +2x+1								
30	x ² +7x+10								

Remainder theorem: - if f(x) is divided by (x - a) then f(a) is the remainder.

Factor theorem: - if f(x) is function and f(a) = 0, then (x - a) is the factor of f(x).

General form of quadratic expression is $ax^2 + bx + c$ General form of quadratic equation is $ax^2 + bx + c = 0$

Roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Roots
$$\alpha = \frac{-b+\sqrt{b^2-4ac}}{2a}$$
, $\beta = \frac{-b-\sqrt{b^2-4ac}}{2a}$.

Roots
$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Sum of the roots $\alpha + \beta = \frac{-b}{a} = -\left(\frac{coefficient\ of\ x}{coefficent\ of\ x^2}\right)$.

Product of the roots
$$\alpha \beta = \frac{c}{a} = \left(\frac{constant\ term}{coefficent\ of\ x^2}\right)$$
.

 Δ (delta) is called discriminant.

$$\Delta = b^2$$
- 4ac.

Nature of roots

If $\Delta > 0$ then roots are real and distinct.

If $\Delta < 0$ then roots are complex and distinct.

If $\Delta = 0$ then roots are real and equal.

The quadratic equation with roots α , β is $x^2 - (\alpha + \beta)x + \alpha\beta = 0$. If the sum of the roots=0 of $ax^2 + bx + c = 0$, then b = 0If the roots reciprocal to each other of $ax^2 + bx + c = 0$, then a = c.

General form of Cubic polynomials is $ax^3 + bx^2 + cx + d$. General form of Cubic equation is $ax^3 + bx^2 + cx + d=0$

If α , β , γ are the zeroes of a cubic polynomial

$$f(x) = ax^{3} + bx^{2} + cx + d, a \neq 0 \text{ then}$$

$$\alpha + \beta + \gamma = \frac{-coeffiecent \ of \ x^{2}}{coeffiecent \ of \ x^{3}} = \frac{-b}{a} \quad \text{and}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{coeffiecent \ of \ x}{coeffiecent \ of \ x^{3}} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-constant}{coeffiecent \ of \ x^{2}} = -\frac{d}{a}$$

	Find the val	ues of the	following	g Quadrati	c polyna	mials
1	$p(x) = x^2 + 3x + 2$	P(-2) =	P(-1) =	P(-3) =	P(-4) =	P(0) =
2	$p(x) = x^2 + 4x + 4$	P(-2) =	P(-1) =	P(-3) =	P(-4) =	P(0) =
3	$p(x) = x^2 + 5x + 6$	P(-2) =	P(-1) =	P(-3) =	P(-3) =	P(0) =
4	$p(x) = x^2 + 7x + 12$	P(-4) =	P(-1) =	P(-3) =	P(-3) =	P(0) =
5	$p(x) = x^2 + 9x + 18$	P(-6) =	P(-1) =	P(-3) =	P(-4) =	P(0) =
6	$p(x) = x^2 + 11x + 18$	P(-2) =	P(-1) =	P(-3) =	P(-4) =	P(0) =
7	$p(x) = x^2 + 7x + 6$	P(-6) =	P(-1) =	P(-9) =	P(-3) =	P(0) =
8	$p(x) = x^2 + 6x + 9$	P(-2) =	P(-1) =	P(-3) =	P(3) =	P(0) =
9	$p(x) = x^2 + 15x + 50$	P(-10) =	P(-1) =	P(-3) =	P(-5) =	P(0) =
10	$p(x) = x^2 + 13x + 30$	P(-2) =	P(-10) =	P(-3) =	P(3) =	P(0) =
11	$p(x) = x^2 - 3x + 2$	P(2) =	P(-1) =	P(-3) =	P(-1) =	P(0) =
12	$p(x) = x^2 + x - 20$	P(-4) =	P(1) =	P(-3) =	P(5) =	P(0) =
13	p (x) =x ² -x - 2	P(-2) =	P(-1) =	P(-3) =	P(1) =	P(0) =
14	p (x) =x ² -x - 6	P(2) =	P(-1) =	P(-3) =	P(3) =	P(0) =
15	$p(x) = x^2 - 3x - 4$	P(-4) =	P(-1) =	P(-3) =	P(1) =	P(0) =
16	$p(x) = x^2 + 3x - 4$	P(4) =	P(-1) =	P(-3) =	P(-2) =	P(0) =
17	p (x) =x ² -1	P(-2) =	P(-1) =	P(-3) =	P(1) =	P(0) =
18	p (x) =x ² -x -30	P(-6) =	P(-1) =	P(-3) =	P(5) =	P(0) =
19	$p(x) = x^2 - 2x - 8$	P(-4) =	P(2) =	P(-3) =	P(1) =	P(0) =
20	$p(x) = x^2 - 4x + 3$	P(2) =	P(-1) =	P(-2) =	P(-3) =	P(0) =
21	p (x) =x ² -x- 2	P(-2) =	P(-1) =	P(-3) =	P(1) =	P(0) =
22	p (x) =x ² -x -6	P(2) =	P(-1) =	P(-4) =	P(-3) =	P(0) =
23	$p(x) = x^2 - 5x - 6$	P(-2) =	P(-1) =	P(-4) =	P(-3) =	P(0) =
24	p (x) =x ² -4x-21	P(7) =	P(-1) =	P(-3) =	P(3) =	P(0) =
25	$p(x) = x^2 + 48x - 324$	P(54) =	P(-1) =	P(-3) =	P(6) =	P(0) =
K.SRI	EENIVASA RAJU	9441637668	ZPHS N.R.I	PALLI		PAGE 26

	Find the value	s of the fo	llowing C	uadratic	polynam	ials
26	$p(x) = x^2 + 5x - 1800$	P(45) =	P(-1) =	P(-3) =	P(-40) =	P(0) =
27	$p(x) = x^2 + 6x - 216$	P(-12) =	P(-1) =	P(-3) =	P(18) =	P(0) =
28	$p(x) = x^2 - 8x - 180$	P(-18) =	P(-1) =	P(-3) =	P(10) =	P(0) =
29	$p(x) = x^2 - 12x + 20$	P(-10) =	P(-1) =	P(-2) =	P(-3) =	P(0) =
30	$p(x) = x^2 + 2x - 288$	P(18) =	P(-1) =	P(-3) =	P(-16) =	P(0) =
31	$p(x) = x^2 - 4x + 3$	P(1) =	P(-1) =	P(-3) =	P(5/3) =	P(0) =
32	$p(x) = 4x^2 + 4x - 3$	P(-3/2) =	P(-1) =	P(-3) =	P(1/2) =	P(0) =
33	$p(x) = 3x^2 - 8x + 4$	P(2/3) =	P(-1) =	P(-3) =	P(2) =	P(0) =
34	$p(x) = 5x^2 - 8x + 4$	P(2) =	P(-1) =	P(-3) =	P(-2/5) =	P(0) =
35	$p(x) = 4x^2 - 5x - 6$	P(2) =	P(-1) =	P(-3) =	P(-3/4) =	P(0) =
36	$p(x) = 4x^2 - x - 4$	P(1/4) =	P(-1) =	P(2) =	P(-3) =	P(0) =
37	$p(x) = x^2 - 16$	P(4) =	P(-1) =	P(-4) =	P(-3) =	P(0) =
38	$p(x) = 9x^2 - 9x + 2$	P(2/3) =	P(-1) =	P(-3) =	P(1/3) =	P(0) =
39	$p(x) = x^2 - 35x + 306$	P(17) =	P(-1) =	P(-3) =	P(18) =	P(0) =
40	$p(x) = x^2-3$	P(√3) =	P(-1) =	P(-3) =	P(-√3) =	P(0) =
41	$p(x) = 5x^2 - 7x - 6$	P(-2) =	P(-1) =	P(-3/5) =	P(2) =	P(0) =
42	$p(x) = x^2 + 32x - 273$	P(-7) =	P(-1) =	P(-3) =	P(39) =	P(0) =
43	$p(x) = x^2 + 2x - 120$	P(-10) =	P(-1) =	P(12) =	P(-3) =	P(0) =
44	$p(x) = x^2 + 2x - 143$	P(13) =	P(-1) =	P(-3) =	P(-11) =	P(0) =
45	$p(x) = x^2 + 4x - 96$	P(12) =	P(-1) =	P(-8) =	P(-3) =	P(0) =
46	$p(x) = x^2 - 27x + 182$	P(13) =	P(-1) =	P(-3) =	P(14) =	P(0) =
47	$p(x) = x^2 + 10x + 25$	P(5) =	P(-1) =	P(-5) =	P(-3) =	P(0) =
48	$p(x) = x^2 + 12x + 36$	P(-6) =	P(-1) =	P(-3) =	P(6) =	P(0) =
49	$p(x) = x^2 + 19x + 60$	P(15) =	P(-1) =	P(-3) =	P(4) =	P(0) =
50	$p(x) = x^2 + 27x + 140$	P(20) =	P(-1) =	P(-3) =	P(7) =	P(0) =
	l	1	1	1	1	1

K.SREENIVASA RAJU 9441637668

ZPHS N.R.PALLI

PAGE 27

	FILL IN THE BLANKS													
S.NO	NUMBER	NUMBER	SUM	PRODUCT	S.NO	NUMBER	NUMBER	SUM	PRODUCT	S.NO	NUMBER	NUMBER	SUM	PRODUCT
1	5	6	11	30	1			9	-10	1	-1			1
2	9	3			2			7	-18	2	-2			4
3	1	9			3			5	-24	3	-3			9
4	7	9			4			3	-28	4	-4			16
5	3	12			5			1	-30	5	-5			25
6	4	15			6			-1	-30	6	-6			36
7	7	9			7			-3	-28	7	-7			49
8	11	2			8			-5	-24	8	-8			64
9	19	3			9			-7	-18	9	-9			81
10	21	3			10			-9	-10	10	-10			100
11	2	-3			11			11	30	11		6		30
12	4	-5			12			12	27	12		3		27
13	6	-7			13			10	9	13		9		9
14	8	-9			14			16	63	14		9		63
15	10	-1			15			15	36	15		12		36
16	1	-2			16			19	60	16		15		60
17	3	-4			17			16	63	17		9		63
18	5	-6			18			13	22	18		2		22
19	7	-8			19			22	57	19		3		57
20	9	-1			20			24	63	20		3		63
21	-1	10			21			-2	1	21	-1	10		-10
22	-2	9			22			-4	4	22	-2	9		-18
23	-3	8			23			-6	9	23	-3	8		-24
24	-4	7			24			-8	16	24	-4	7		-28
25	-5	6			25			-10	25	25	-5	6		-30
26	-6	5			26			-12	36	26	-6	5		-30
27	-7	4			27			-14	49	27	-7	4		-28
28	-8	3			28			-16	64	28	-8	3		-24
29	-9	2			29			-18	81	29	-9	2		-18
30	-10	1			30			-20	100	30	-10	1		-10
31	-1	-1			31			11	30	31	2		-1	
32	-2	-2			32			12	27	32	4		-1	
33	-3	-3			33			10	9	33	6		-1	
34	-4	-4			34			16	63	34	8		-1	
35	-5	-5			35			15	36	35	10		9	
36	-6	-6			36			19	60	36	1		-1	
37	-7	-7			37			16	63	37	3		-1	
38	-8	-8			38			13	22	38	5		-1	
39	-9	-9			39			22	57	39	7		-1	
40	-10	-10			40			24	63	40	9		8	
	1	•		ı									1	

									$c + b x + c, a \neq 0$ then $c = \frac{c}{c}$
l u	<u>' /</u>		coef	fiec	ent o	$\frac{of x}{f x^2} = \frac{-b}{a}$ and	coeffi	ecen	
					C	$\alpha + \beta = \frac{-coeffiece}{coeffiece}$	$\frac{nt \ of \ x}{t \ of \ x^2} = \frac{-b}{a}$		$\alpha \beta = \frac{constant}{coefficient of x^2} = \frac{c}{a}$
$ax^2 + bx + c$	a	1	b		C	- coeffiecent o	$\frac{\text{of x}}{\text{f x}^2} = \frac{-b}{a}$		$\frac{\text{constant}}{\text{coeffiecent of } x^2} = \frac{c}{a}$
$x^2 - x - 12$						<u> </u>	u u		
$x^2 - 6x + 9$									
$x^2 - 4x + 5$									
$x^2 + 3x - 4$									
x ² - 1									
$2x^2 - 8x + 6.$									
$3x^2 + 5x - 2$.									
$x^2 - x - 6$									
$x^2 - 4x + 3$									
$x^2 - 4$									
$x^2 + 2x + 1$									
$x^2 + 7x + 10$									
$x^2 - 3$									
$x^2 - 2x - 8$									
$4x^2 - 4s + 1$									
$6x^2 - 3 - 7x$									
$4x^2 + 8u$									
x ² - 15									
$3x^2 - x - 4$									
CUBIC POLYNOMIALS If α , β , γ are the zeroe		a cub	ic no	lvne	omial	$f(y) = ay^3 + by^2 + cy$	$\pm d a \neq 0$ then	ı	
$\alpha + \beta + \gamma = -\frac{1}{2}$	coeff	iecent	$\frac{of x^2}{fx^3}$ =	-b	and	$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{co}{a}$	$\frac{effiecent\ of\ x}{constant} = \frac{c}{c}$, 0	$\alpha \beta \gamma = \frac{-constant}{coefficeent of x^2} = -\frac{d}{a}$ $\alpha \beta \gamma = \frac{-constant}{coefficeent of x^2} = -\frac{d}{a}$
	оејји	ecent o	J X ³	а	α	$+ \beta + \gamma$	$\alpha \beta + \beta \gamma + \gamma \alpha$	=	$\alpha R v = \frac{-constant}{-constant} = -\frac{d}{a}$
	a	b	С	d	$=\frac{-c}{co}$	$\frac{+\beta + \gamma}{\text{pefficent of } x^2} = \frac{-b}{a}$	$\frac{coeffiecent\ of\ x}{coeffiecent\ of\ x^3}$	$=\frac{c}{a}$	$coeffiecent of x^2$ a
$ax^3 + bx^2 + cx + d$									-constant d
						$\frac{fiecent\ of\ x^2}{fiecent\ of\ x^3} = \frac{-b}{a}$	$\frac{coeffiecent\ of\ x}{coeffiecent\ of\ x^3}$	$=\frac{c}{a}$	$\frac{-constant}{coefficeent of x^2} = -\frac{d}{a}$
$2 x^3 - 5 x^2 - 14x + 8.$									
$x^3 + 3x^2 - x - 2$									
$4x^3 + 8x^2 - 6x - 2$									
$x^3 + 4x^2 - 5x - 2$									
$x^3 + 5 x^2 + 4$									
$3 x^3 - 5 x^2 - 11x - 3,$									
$x^3 + 3 x^2 - x - 3$									

ZPHS N.R.PALLI

PAGE 29

K.SREENIVASA RAJU

	Find the values of the following Quadratic polynamials											
	POLYNAMIAL	а	b	C	$\alpha+\beta=-b/a$	α X β =c/a						
	TOETHAMIAE	a	D		sum of roots	product of roots						
	$p(x) = ax^2 + bx + c$	a	b	С	– b/a	c/a						
1	$p(x) = x^2 + 3x + 2$											
2	$p(x) = x^2 + 4x + 4$											
3	$p(x) = x^2 + 5x + 6$											
4	p (x) =x ² +7x +12											
5	$p(x) = x^2 + 9x + 18$											
6	$p(x) = x^2 + 11x + 18$											
7	$p(x) = x^2 + 7x + 6$											
8	$p(x) = x^2 + 6x + 9$											
9	$p(x) = x^2 + 15x + 50$											
10	$p(x) = x^2 + 13x + 30$											
11	$p(x) = x^2 - 3x + 2$											
12	$p(x) = x^2 + x - 20$											
13	$p(x) = x^2 - x - 2$											
14	$p(x) = x^2 - x - 6$											
15	$p(x) = x^2 - 3x - 4$											
16	$p(x) = x^2 + 3x - 4$											
17	$p(x) = x^2-1$											
18	$p(x) = x^2 - x - 30$											
19	$p(x) = x^2 - 2x - 8$											
20	$p(x) = x^2 - 4x + 3$											
21	p (x) =x ² -x- 2											
22	p (x) =x ² -x -6											
23	$p(x) = x^2 - 5x - 6$											
24	$p(x) = x^2 - 4x - 21$											
25	$p(x) = x^2 + 48x - 324$											

	Find the	values	of the	follov	wing Quadratic poly	namials
	POLYNAMIAL	а	b	С	α+β =- b/a	α X β =c/a
					sum of roots	product of roots
	p (x) =ax²+bx +c	а	b	С	– b/a	c/a
26	$p(x) = x^2 + 5x - 1800$					
27	$p(x) = x^2 + 6x - 216$					
28	$p(x) = x^2 - 8x - 180$		<u> </u>			
29	p (x) =x ² -12x +20					
30	p (x) =x ² +2x -288					
31	$p(x) = x^2 - 4x + 3$					
32	$p(x) = 4x^2 + 4x - 3$					
33	$p(x) = 3x^2 - 8x + 4$					
34	$p(x) = 5x^2 - 8x + 4$					
35	p (x) =4x ² -5x - 6					
36	p (x) =4x²-x -4					
37	p (x) =x ² -16					
38	p (x) =9x ² -9x +2					
39	p (x) =x ² -35x +306					
40	p (x) =x ² -3					
41	p (x) =5x ² -7x -6					
42	p (x) =x ² +32x -273					
43	p (x) =x ² +2x -120					
44	p (x) =x ² +2x -143					
45	p (x) =x ² +4x -96					
46	p (x) =x ² -27x +182					
47	p (x) =x ² +10x +25					
48	p (x) =x ² +12x +36					
49	$p(x) = x^2 + 19x + 60$					
50	p (x) =x ² +27x +140					

SOLUTIONS OF PAIRS OF LINEAR EQUATIONS IN TWO VARIABLE

Let: $a_1x + b_1y + c_1 = 0$, $(a_1^2 + b_1^2 \neq 0)$ and $a_2x + b_2y + c_2 = 0$ $(a_2^2 + b_2^2 \neq 0)$ form a pair of linear equation in two variables.

The graph of a linear equation in two variables is a <u>straight line</u> Ordered pairs of real numbers (x, y) representing points on the line are solutions of the equation and ordered pairs of real numbers (x, y) that do not represent points on the line are not solutions.

S.N.	Compare the Ratio	Graphic representation	Algebraic interpretation	Linear equations
1		Intersection lines at one point	Exactly one solution or unique solution	Consistent
2	***	Coincident line	Infinity solution or many solutions	Dependent and consistent
3	—	Parallel lines	No solution	Inconsistent

Graph

- 1. The horizontal line in the graph is called X- axis.
- 2. The vertical line in the graph is called Y- axis.
- 3. The intersecting point of horizontal and vertical lines is called origin (0). It is represented by (0,0).
- 4. X and Y axes divide the plane into four regions.
- 5. Four regions are called quadrants.

They are denoted by Q_1 , Q_2 , Q_3 , Q_4 .

- 6. Every point in the plane is denoted by a unique ordered pair (x, y).
- 7. In (x, y), x is called x coordinate or abscissa.
- 8. In (x, y), y is called y coordinate or ordinate.
- 9. The y coordinates of X axis is zero. The x coordinates of Y- axis is zero.
- 10. The equation of X axis is y = 0. The equation of Y axis is x = 0.
- 11. If x > 0, y > 0 then (x, y) lies in Q_1 . If x < 0, y > 0 then (x, y) lies in Q_2 .
- 12.If x < 0, y < 0 then (x, y) lies in Q_3 . If x > 0, y < 0 then (x, y) lies in Q_4 .
- 13.If x = 0, y > 0 then (x, y) lies on positive Y axis.
- 14.If x = 0, y < 0 then (x, y) lies on negative Y axis.
- 15.If x > 0, y = 0 then (x, y) lies on positive X axis.
- 16.If x < 0, y = 0 then (x, y) lies on negative X axis.
- 17. If x = 0, $y \ne 0$ then (x, y) lies on Y axis. If $x \ne 0$, y = 0 then (x, y) lies on X axis.

In graph the scale is important

SCALE: ON X -AXIS 1CM = ___UNITS, ON Y -AXIS 1CM = __ UNITS

K.SREENIVASA RAJU

9441637668

ZPHS N.R.PALLI

PAGE 3

GEOMETRICAL M LINEAR POLYNOM 1.					MIAL GRAPH CH AND EVE			
X	- 2	-1	0	1	2	3	4	5
y = 2x + 3								
(x, y)								
$ \begin{array}{c} x \\ y = 2x + 5 \end{array} $	-2	-1	0	1	2	3	4	5
y = 2x + 5								
(x, y)								
3. X	-2	-1	0	1	2	3	4	5
y = 2x - 5								
(x, y)								
4. X	-2	-1	0	1	2	3	4	5
y = y = 2x								
(x, y)								
5. X	-2	-1	0	1	2	3	4	5
y = 3x + 5								
(x, y)								
6. X	-2	-1	0	1	2	3	4	5
y = 5 x								
(x, y)								
7. X	- 2	-1	0	1	2	3	4	5
y = 2x + 3								
(x, y)								
8		Γ	I	1			1	
y = 4x + 3	-2	-1	0	1	2	3	4	5
(x, y)								
9. X	-2	-1	0	1	2	3	4	5
y = 2x + 1	- 2	-1	V	1	4	3	7	3
(x, y)								
10. X	-2	-1	0	1	2	3	4	5
y = 2x - 1	_	•	v	*	_			
(x, y)								
K.SREENIVASA RAJU	J	9441637668	3 Z	PHS N.R	.PALLI			PAGE 33

X	GEOMETRICAL MEANING OF THE ZEROES OF A POLYNOMIAL										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GRAPHICAL REPRESENTATION OF A QUADRATIC POLYNOMIA L (curves are called <i>Parabolas</i>)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_1	Τ	1	7	3	1	5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-1	V	1	4	J	-	3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-2	-1	0	1	2	3	4	5		
$ \begin{array}{ c c c c c c c }\hline & (x,y) & & & & & & & & & & & & & & & & & & &$	$y = x^2 - x - 12$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{ c c c c c c c c }\hline Y=x^2-6x+9 & & & & & & & & & & & & & & & & & & &$	3.			.1							
$ \begin{array}{ c c c c c c c c c }\hline & (x,y) & & & & & & & & & & & & & \\\hline & x & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & Y = x^2 - 4x + 5 & & & & & & & & & & & & \\\hline & (x,y) & & & & & & & & & & & & & \\\hline & x & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & x & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & x & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & y = x^2 - 1 & & & & & & & & & & & \\\hline & (x,y) & & & & & & & & & & & \\\hline & x & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & y = x^2 - x - 6 & & & & & & & & & & & \\\hline & (x,y) & & & & & & & & & & & & \\\hline & x & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & y = x^2 - 4x + 3 & & & & & & & & & & & \\\hline & x & & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & y = x^2 + 2x + 1 & & & & & & & & & & & \\\hline & x & & & -2 & & -1 & & 0 & & 1 & & 2 & & 3 & & 4 & & 5 \\\hline & y = x^2 + 7x + 10 & & & & & & & & & & \\\hline \end{array}$			-1	0	1	2	3	4	5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Y = x^2 - 6x + 9$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x, y)										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.			.1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-2	-1	0	1	2	3	4	5		
5. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Y = x^2 - 4x + 5$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x, y)										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1	0	1	2	3	4	5		
6. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l ———			<u></u>	<u> </u>	<u> </u>	т	T	, 		
(x, y) x -2 -1 0 1 2 3 4 5 $Y = x^2 - x - 6$ (x, y) (x, y) (x, y) (x, y) (x, y) x -2 -1 (x, y) (x, y) x (x, y) (x, y) (x, y) x (x, y) (x, y) (x, y) x (x, y)		-2	-1	0	1	2	3	4	5		
7. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	_ 2	1	Τ	1 1	1 2	3	1 4	5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-2	-1	U	1	<u> </u>	3	4	3		
8 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l	-2	-1	0	1	2	3	4	5		
9. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
9. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$y = x^{2} + 2x + 1$ (x, y) 10. $x - 2 -1 0 1 2 3 4 5$ $y = x^{2} + 7x + 10$				<u>.I</u>	<u>I</u>	<u>I</u>		<u>I</u>			
		-2	-1	0	1	2	3	4	5		
10.	$y = x^2 + 2x + 1$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(x, y)										
$y = x^2 + 7x + 10$	10.										
			-1	0	1	2	3	4	5		
(x, y)		<u>)</u>									
	(x, y)										

ZPHS N.R.PALLI

PAGE 34

K.SREENIVASA RAJU

RELATION BETWEEN COEFFICIENTS AND NATURE OF SYSTEM OF EQUATIONS

Let a_1, b_1, c_1 and a_2, b_2, c_2 denote the coefficients of a given pair of linear equations in two variables. Then, let us write and compare the values

Let a_1 , b_1 , c_1 and a_2 , b_2 , c_2					two variables. Then, let us write	
Pair of lines	$\frac{a_1}{a_2}$	$\frac{b_1}{b_2}$	$\frac{c_1}{c_2}$	Comparison of ratios	Graphical representation	Algebraic interpretation
3x+2y-80 = 0	3	2	-80	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Intersecting	Unique
4x+3y-110=0	4	$\frac{2}{3}$	-110	a_2 b_2	lines	solution
1x+2y-30=0	1	$\frac{2}{4} = \frac{1}{2}$	-30	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Parallel	No solution
2x+4y-66=0	<u>2</u>	4 2	-66	a_2 b_2 c_2	lines	
3x+6y=3900	3	$\frac{6}{2} = \frac{3}{1}$	3900 _ 3	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Coincident lines	Infinite number
x+2y = 1300	<u>1</u>	2 1	$\overline{1300} = \overline{1}$	a_2 b_2 c_2	(Dependent lines)	of solutions
2x + y - 5 = 0						
3x - 2y - 4 = 0						
3x + 4y = 2						
6x + 8y = 4						
4x-6y-9=0						
2x-3y-5=0						
2x+3y=1						
3x-y=7						
x + 2y = 6						
2x + 4y = 12						
3x - 2y = 6						
6x+4y=18						
5x - 4y + 8 = 0						
7x+6y-9=0						
9x+3y+12=0						
18x+6y+24=0						
6x - 3y + 10 = 0						
2x - y + 9 = 0						
3x+2y=5						
2x - 3y = 7						
2x - 3y = 8						
4x - 6y = 9						
$\frac{3}{2}x+\frac{5}{3}y=7$						
9x - 10y = 14						
5x-3y = 11						
-10x+6y = -22						
$\frac{4}{3}x + 2y = 8$						
2x+3y=12						
x+y=5						
2x+2y=10						
x - y = 8						
3x-3y = 16						
2x + y - 6 = 0						
4x-2y-4=0						
2x-2y-2=0						
4x-4y-5=0						
2x + y + 5 = 0						
3x + 2y - 4 = 0						
2x + y + 5 = 0						
4x + 2y + 15 = 0						
4x + 2y + 5 = 0						
2x + y + 5 = 0						
4x - 2y + 5 = 0						
2x - y + 5 = 0						
l						

1 The equations are 20 (0 = 00 and 40 20 440 and 40							
1. The equations are $3x + 6y = 80$ a For the equation $3x + 2y = 80$				4x + 3y = 110			
X	$y = \frac{80 - 3x}{2}$	(x,y)		X	$y = \frac{110 - 4x}{3}$	(x,y)	
				-10	y 3	(-15)	
0	$y = \frac{80 - 3(0)}{6} = \frac{80}{2} = 40$	(0,40)				(,)	
10		(,)	_	20		(,)	
20		(,)		50		(,)	
30		(,)	-			(,)	
2. (ii) The equations $1x+2y=30$ and $2x+4y=66$.				Graph 2			
For the equation $1x+2y=30$				For the equation 2x+4y = 66			
X							
	$y = \frac{30 - x}{2}$	(x, y)	L	X	$y = \frac{66 - 2x}{4}$	(x,y)	
0		(,)		1		(,)	
2		(,)		3		(,)	
4		(,)		5		(,)	
6		(,)		7		(,)	
(3) The equations as $3x + 6y = 3900$ and $x + 2y = 1300$. Graph 3							
For the equation $3x + 6y = 3900$			150	For the equation $x + 2y = 1300$			
X	$y = \frac{3900 - 3x}{6}$	(x, y)		Х	$y = \frac{1300 - x}{2}$	(x, y)	
100		(,)		100		(,)	
200		(,)		200		(,)	
300		(,)		300		(,)	
400		(,)		400		(,)	
4. Solve the following systems of equations: i) $x - 2y = 0$; $3x + 4y = 20$ Graph 4							
For the equation $x - 2y = 0$				For the equation $3x + 4y = 20$			
х	$y = \frac{x}{2}$	(x, y)		X	$y = \frac{20 - 3x}{4}$	(x, y)	
0		(,)		0		(,)	
2		(,)		2		(,)	
4		(,)		4		(,)	
6		(,)		6		(,)	
K.SREENIVASA RAJU 9441637668 ZPHS N.R .PALLI PAGE 36							

5) x	+ y = 2 ; 2x + 2y = 4			Gra	ph 5	
	For the equation $x + y = 2$			For the equation $2x + 2y =$		
X	y = 2 - x	(x, y)	X	$y = \frac{4 - 2x}{2}$	(x, y)	
0		(,)	0		(,)	
1		(,)	2		(,)	
2		(,)	4		(,)	
3		(,)	6		(,)	
6) 2	x - y = 4; $4x - 2y = 6$			Graph 6		
	For the equation $2x - y = 4$	4		For the equation $4x - 2y =$	6	
x	y = 2x - 4	(x, y)	x	$y = \frac{4x - 6}{2}$	(x, y)	
0		(,)	0		(,)	
2		(,)	1		(,)	
4		(,)	2		(,)	
-1		(,)	3		(,)	
7)	x + 2y - 4 = 0 and $2x + 4y - 12$	= 0. Repre	sent this	situation graphically. Graph 7		
	For the equation $x + 2y - 4 =$	= 0	For the equation $2x + 4y - 12 = 0$			
X	$y = \frac{4-x}{2}$	(x, y)	X	$y = \frac{12 - 2x}{4}$	(x, y)	
0		(,)	0		(,)	
2		(,)	1		(,)	
4		(,)	2		(,)	
-1		(,)	3		(,)	
8. 2 <i>x</i>	+y-5=0, $3x-2y-4=0$					
	For the equation $2x + y - 5$	= 0		For the equation ; $3x - 2y - 4$	ł = 0	
x	y = 5 - 2x	(x, y)	х	$y = \frac{3x - 4}{2}$	(x, y)	
0		(,)	0		(,)	
1		(,)	2		(,)	
2		(,)	4		(,)	
3		(,)	6		(,)	
K.SRE	ENIVASA RAJU 944163	7668 ZF	PHS N.R.	PALLI	PAGE 37	

9)	9) $3x + 4y - 2 = 0, 6x + 8y - 4 = 0$								
For t	he equation $3x + 4y - 2 = 0$				For the equation ; 6x+8y - 4	= 0			
x	$y = \frac{2-3x}{4}$	(x, y)		X	$y = \frac{4 - 6x}{8}$	(x, y)			
0		(,)		0		(,)			
2		(,)		2		(,)			
4		(,)		4		(,)			
6		(,)		6		(,)			
10)	4x-6y-9=0, 2x-3y	y - 5 = 0			l				
For t	he equation 4x-6y - 9 = 0				For the equation ; 2x-3y - 5	5 = 0			
x	$y = \frac{4x - 9}{6}$	(x, y)		х	$y = \frac{2x-5}{3}$	(x, y)			
0		(,)	L	1		(,)			
3		(,)		3		(,)			
6		(,)		6		(,)			
11)	2x+3y=1, $3x-y=7$				1	1			
For t	he equation 2x+3y = 1			For the equation $3x-y=7$					
x		(x, y)		X		(x, y)			
		(,)	-			(,)			
		(,)				(,)			
		(,)	-			(,)			
		(,)				(,)			
12)	x + 2y = 6, $2x + 4y = 12$			ı					
	For the equation $x + 2y = 6$	5			For the equation $2x + 4y = 1$	2			
X		(x,y)	-	X		(x, y)			
		(,)				(,)			
		(,)	-			(,)			
		(,)				(,)			
		(,)	-			(,)			
K CDI	ENIVASA RAJU 944163	7668	701	HS N.R	PAIII	PAGE 38			
N.SKE	LINIVASA NAJU 944103	7 000	27	IIS IN.K	TALLI	PAGE 38			

13)	3x - 2y = 6, 6x + 4y = 1	18				
	For the equation $3x - 2y = 0$	6			For the equation $6x+4y = 18$	3
X		(x, y)		X		(x, y)
		(,)				(,)
		(,)				(,)
		(,)				(,)
		(,)	-			(,)
14)	x - y - 1 = 0, x - 2y + 2 = 0					
For t	he equation $x \cdot y - 1 = 0$				For the equation $x - 2y + 2 =$	0
х		(x, y)	-	х		(x, y)
0		(,)		0		(,)
1		(,)		2		(,)
2		(,)		4		(,)
3		(,)		6		(,)
4		(,)		8		(,)
15)	l+b-16=0, l-2b+2	= 0				
For t	he equation $l + b - 16 = 0$				For the equation $l - 2b + 2 =$	0
x		(x,y)	_	X		(x, y)
6		(,)	_	6		(,)
8		(,)		8		(,)
10		(,)		10		(,)
12		(,)		12		(,)
14		(,)		14		(,)
16		+ 2y = 5			For the equation $2x - 3y = 7$	
X	3x + 2y = 5	(x, y)		X	2x - 3y = 7	(x, y)
		(,)				(,)
		(,)				(,)
	_	(,)				(,)
		(,)				(,)
		(,)				(,)
K.SRE	ENIVASA RAJU 944163	7668	ΖP	HS N.I	R .PALLI	PAGE 39

17)	For the equation $2x - 3y = 8$;			For the equation $4x - 6y = 9$	
X		(x, y)		X		(x, y)
		(,)	_			(,)
		(,)	_			(,)
		(,)	_			(,)
		(,)				(,)
		(,)	-			(,)
40)	F	-			For the counties On 10 or	
18)	For the equation $3/2x + 5/3y$			[For the equation $9x - 10y = 1$	
X		(x, y)	-	X		(x, y)
		(,)	_			(,)
		(,)				(,)
		(,)	-			(,)
		(,)				(,)
		(,)	-			(,)
19)	For the equation $5x - 3y = 11$				For the equation $10x + 6y = -$	22
X		(x,y)	-	X		(x, y)
		(,)				(,)
		(,)				(,)
		(,)	-			(,)
		(,)				(,)
		(,)				(,)
0.03	B 4 4 4 2 2	0			n	10
20) x	For the equation $4/3x + 2y =$	(x, y)		X	For the equation $2x + 3y = 2$	$\begin{array}{ c c }\hline (x,y) \\ \hline \end{array}$
		(x,y)		^		(x,y)
		(,)				(,)
		(,)				(,)
		(,)				(,)
		(,)				(,)
K.SRF	ENIVASA RAJU 9441637		ZPI	l HS N.R	.PALLI	PAGE 40

21)	For the equation x + y = 5		П		For the equation 2x + 2y = 1	.0
x		(x, y))	ζ.		(x, y)
		(,)				(,)
		(,)				(,)
		(,)	J			(,)
		(,)				(,)
		(,)				(,)
22)	For the equation x+	v -5			For the equation 2 x +	2 v -10 = 0
x	Tor the equation X 1	(x, y)	x		Tor the equation 2 x :	$\frac{2y}{(x,y)}$
		(,)				(,)
		(,)	-			(,)
		(,)				(,)
		(,)				(,)
		(,)				(,)
23)	For the equation $x - y = 8$		_		For the equation $3x - 3y = 16$	
X		(x, y)	X			(x, y)
		(,)	-			(,)
		(,)				(,)
		(,)				(,)
		(,)				(,)
		(,)				(,)
24)	For the equation $2x + y - 6 = 0$				For the equation 4x - 2y - 4 = (0
x		(x, y)	х			(x, y)
		(,)	-			(,)
		(,)				(,)
		(,)				(,)
		(,)				(,)
		(,)				(,)
K.SRE	ENIVASA RAJU 9441637	' 668	ZPHS N	N.R .	PALLI	PAGE 41

25) For the equation 2x - 2	2v - 2		For the equation 4x - 4y - 5	= 0
x	(x, y)	x	101 0110 Oquavion 111 13	(x, y)
	(,)			(,)
	(,)			(,)
	(,)			(,)
	(,)			(,)
	(,)	_		(,)
26) For the equation x + y	= 10		For the equation $y = x + 4$	4
х	(x, y)	X		(x, y)
	(,)			(,)
	(,)			(,)
	(,)			(,)
	(,)	_		(,)
	(,)			(,)
27) For the equation 5x + 7y	- 50		For the equation $7 \times + 5 y =$. 16
x	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- X	roi the equation 7 x + 3 y -	(x, y)
	(,)	_		(,)
	(,)			(,)
	(,)			(,)
	(,)			(,)
	(,)	_		(,)
28) For the equation x - y	1		For the equation $x + y = 3$	
X	(x, y)	X		(x, y)
	(,)			(,)
	()			
	(,)			(,)
	(,)			(,)
K.SREENIVASA RAJU 944163		ZPHS N.I	R .PALLI	PAGE 42

	find the	e roots of the	e following pro	blems	
1	x(x+3)+5(x+3)=0	(x+3)(x+5)=0	$x + 3 = 0 \Rightarrow x = -3$	$x + 5 = 0 \Rightarrow x = -5$	x= -3,-5
2	x (x + 3) +2 (x + 3) = 0				
3	x(x+3)+7(x+3)=0				
4	x(x+8)+6(x+8)=0				
5	x(x+3)+3(x+3)=0				
6	x (x + 2) +4 (x + 2) = 0				
7	x(x+3)+8(x+3)=0				
8	x(x+8)+9(x+8)=0	(x + 8) (x + 9)=0	$x + 8 = 0 \Rightarrow x = -8$	$x + 9 = 0 \Rightarrow x = -9$	x= -8,-9
9	x(x+3)+10(x+3)=0				
10	2x(x+3)+5(x+3)=0				
11	3x(x+3)+5(x+3)=0				
12	x(x+7)+5(x+7)=0				
13	x(x-2) + 5(x-2) = 0				
14	7x(x-5)+5(x-5)=0				
15	x(x+3)-5(x+3)=0				
16	2x(x+8)-5(x+8)=0				
17	3x(x+3)-5(x+3)=0				
18	7x(x+3)-5(x+3)=0				
19	x(x-3)+5(x-3)=0				
20	2x(x-3)+5(x-3)=0				
21	3x (x - 3) + 5 (x - 3) = 0				
22	3x(x+3)-5(x+3)=0				
23	4x(x-3)+5(x-3)=0				
24	x(2x+3)+5(2x+3)=0				
25	x(2x+5)+5(2x+5)=0				
26	2x(7x+3)+5(7x+3)=0				
27	2x(7x-3)+5(7x-3)=0				
28	3x(4x+3)-5(4x+3)=0				
29	x(4x-3)-5(4x-3)=0				
30	x (x -7) -4 (x -7) = 0				

	Find the fa	ctors(roots) of the	e following Quad	ratic equations
1	x ² +3x +2=0	x²+2x +1x +2=0	x(x+2) + 1(x+2)=0	(x+1) (x+2)=0
		(x+1) = 0 ⇒x = -1	(x+2)=0 ⇒x = -2	X = -1 , -2
2	x ² +4x +4=0			
				
3	x ² +5x +6=0	<u> </u>		
4	x ² +7x +12=0	<u> </u>		
4	X +/X +12-0		+	
5	x ² +9x +18=0	 		
6	x²+11x +18=0			
<u> </u>		 		
7	x ² +7x +6=0			
8	x ² +6x +9=0	<u> </u>		
	X 10X 13=0	 		+
9	x ² +15x +50=0			
10	x ² +13x +30=0			
		 		
11	x²-3x +2=0			
12	x ² +x -20=0	 		
1-	X TX -20-0			
13	x²-x - 2=0	 I	+	+
14	x²-x - 6=0			
				
15	x²-3x -4=0			
16	x ² +3x -4=0	<u> </u>		
10	X T3X -4-0	<u> </u>		
17	x²-1=0	 	-	+
18	x²-x -30=0			
19	x²-2x -8=0	 		
30	2 412-0			
20	x ² -4x +3=0	<u> </u>	 	+
<u> </u>				

	Find the fa	ctors(roots)	of the follo	owing Quadra	tic equations
21	x²-x- 2=0				
22	x²-x -6=0				
23	x²-5x -6=0				
24	x²-4x-21=0				
25	x²+48x -324=0				
26	x²+5x -1800=0				
27	x²+6x -216=0				
28	x²-8x-180=0				
29	x²-12x +20=0				
30	x²+2x -288=0				
31	x²-4x +3=0				
32	4x²+4x -3=0				
33	$3x^2-8x+4=0$				
34	5x ² -8x +4=0				
35	$2x^{2}-5x +6=0$ $4x^{2}-x -4=0$				
37	x ² -16=0				
38	9x ² -9x +2=0				-
	x ² -35x +306=0				
40	x²-3=0				

Find the nature of the roots following Quadratic equations

a) Two distinct real roots, if $b^2-4ac > 0$, b) two equal roots (coincident roots), if $b^2-4ac = 0$, c) no real roots, if $b^2-4ac < 0$.

	Quadrtic equations	а	b	С	Discriminant= b²-4ac	Nature of roots
1	x²+3x +2=0	1	3	2	9 - (4x1x2) = 9 - 8 = 1	b ² -4ac > 0 Two D Roots (a)
2	x²+4x +4=0					
3	x²+5x +6=0					
4	x ² +7x +12=0					
5	x ² +9x +18=0					
6	x²+11x +18=0					
7	x²+7x +6=0					
8	x ² +6x +9=0					
9	x ² +15x +50=0					
0	x²+13x +30=0					
11	x²-3x +2=0					
12	x²+x -20=0					
13	x²-x - 2=0					
14	x²-x - 6=0					
15	x²-3x -4=0					
16	x ² +3x -4=0					
17	x²-1=0					
18	x²-x -30=0					
19	x²-2x -8=0					
20	x²-4x +3=0					
21	x²-x- 2=0					
22	x²-x -6=0					
23	x²-5x -6=0					
24	x ² -4x-21=0					
25	x ² +48x -324=0					
K.SRI	EENIVASA RAJU	944	16376	68	ZPHS N.R.PALLI	PAGE 46

	Quadratic equations	а	b	С	Discriminant= b²-4ac	Nature of roots
26	x ² +5x -1800=0					
27	x ² +6x -216=0					
28	x ² -8x-180=0					
29	x ² -12x +20=0					
30	x ² +2x -288=0					
31	x²-4x +3=0					
32	4x²+4x -3=0					
33	$3x^2-8x+4=0$					
34	5x²-8x +4=0					
35	2x²-5x +6=0					
36	4x²-x -4=0					
37	x²-16=0					
38	9x²-9x +2=0					
39	x ² -35x +306=0					
40	x ² -3=0					
41	5x²-7x -6=0					
42	x ² +32x -273=0					
43	x ² +2x -120=0					
44	x ² +2x -143=0					
45	x²+4x -96=0					
46	x ² -27x +182=0					
47	x ² +10x +25=0					
48	x²+12x +36=0					
49	x²+19 +60=0					
50	x ² +27x +140=0					

	Find	the r	oots	foll	owing Qua	adratic equations
	Quadrtic					
	equations	а	b	С	b ² -4ac	roots = $(-b\pm\sqrt{b^2-4ac})/2a$
1	x²+3x +2=0					
2	x ² +4x +4=0					
3	x²+5x +6=0					
4	x ² +7x +12=0					
5	x²+9x +18=0					
6	x²+11x +18=0					
7	x ² +7x +6=0					
8	x ² +6x +9=0					
9	x ² +15x +50=0					
10	x²+13x +30=0					
11	x²-3x +2=0					
12	x²+x -20=0					
13	x²-x - 2=0					
14	x²-x - 6=0					
15	x²-3x -4=0					
16	x ² +3x -4=0					
17	x²-1=0					
18	x²-x -30=0					
19	x²-2x -8=0					
20	x²-4x +3=0					
21	x²-x- 2=0					
22	x²-x -6=0					
23	x²-5x -6=0					
24	x ² -4x-21=0					
25	x ² +48x -324=0					

	Quadratic equations	а	b	с	b²-4ac	roots = (-b±√ b²-4ac)/2a
26	x ² +5x -1800=0					
27	x ² +6x -216=0					
28	x ² -8x-180=0					
29	x²-12x +20=0					
30	x ² +2x -288=0					
31	x²-4x +3=0					
32	4x ² +4x -3=0					
33	$3x^2-8x+4=0$					
34	5x ² -8x +4=0					
35	2x²-5x +6=0					
36	4x²-x -4=0					
37	x ² -16=0					
38	9x²-9x +2=0					
39	x ² -35x +306=0					
40	x ² -3=0					
41	5x ² -7x -6=0					
42	x ² +32x -273=0					
43	x ² +2x -120=0 x ² +2x -143=0					
44	x ² +4x -96=0					
46	x ² -27x +182=0					
46	x ² +10x +25=0					
47	x ² +10x +25=0 x ² +12x +36=0					
49	x ² +19 +60=0					
50	x ² +27x +140=0					
50	X TZ/X T14U=U					

	PROGRESSIONS												
	ARITHMETIC PROGRESSION												
								DIF	FEREN	NCE		Difference	is it
	a ₁	a ₂	аз	a 4	a 5	a 6	a 2 - a 1	a 3- a 2	a 4- a 3	a s- a 4	a ₆ - a ₅	Equal/or not	A.P
1	1	2	3	4	5	6							
2	3	6	9	12	15	18							
3	7	14	21	28	35	42							
4	9	7	5	3	1	-1							
5	1	5	9	13	17	21							
6	5	7	5	5	8	5							
7	8	3	-2	-7	-12	-17							
8	-2	4	10	16	22	28							
9	-8	1	10	19	28	37							
10	-2	-2	-2	-2	-2	-2							
11	-3	-1	1	3	5	7							
12	-6	3	0	3	6	9							
13	8	-3	-14	-25	-36	-47							
14	2	6	10	14	18	22							
15	5	1	-3	-7	-11	-15							
16	9	6	3	0	-3	-6							
17	1	3	5	7	9	11							
18	7	4	0	-2	-5	-8							
19	10	3	-4	-11	-18	-25							
20	15	11	7	3	-1	-5							
21	25	22	19	16	13	10							
22	36	30	24	18	12	6							
23	36	18	0	-18	-36	-54							
24	50	35	20	15	-10	-25							
25	99	87	75	63	51	39				1			
26	111	100	89	78	67	56							
27	19	38	57	76	95	114				-			
28	21	42	63	84	105	126				-			
29	-2	-4	-6	-8	-10	-12				1			
30	-5	2	7	16	23	30				1			
31	-4	-6	-8	-10	-12	-14				1			
32	-7	-3	1	5	9	13				1			
33	-5	3	11	19	27	35							
34	-1	-2	-3	-4	-5	-6				1			
	35 -4 -7 -10 -13 -16 -19												
K.SR	EENIVA	SA RAJ	U		9441	637668	ZF	PHS N.R	.PALLI			PAGI	50

			PR	OGRI	ESSI	INS				
		1	ARITH	METIC I	PROGRE	SSION	1	1		1
	a 1	difference	a ₂	a 3	a 4	a 5	a 6	a 7	a s	a 9
	a	d	a+d	a+2d	a+3d	a+4d	a+5d	a+6d	a+7d	a+8d
1	1	2								
2	2	4								
3	3	6								
4	1	7								
5	3	5								
6	5									69
7	7		5	3						
8		9	14							
9		1						7		<u> </u>
10			170							660
11						-20	-50			<u> </u>
12					0					5
13									-4.5	-5
14				6	8					
15				-11		-15				
16							1.5	1.6		
17									10.5	12
18	2									2
19	10						60			
20								-2	-2	<u> </u>
21	4							-14		<u> </u>
22				0						3
23					-2		-2.5			10
24							-7			-13
25					7	11			0.3	0.4
26	7								8.3	9.4
27								6		31
28	-18 46							-6		22
		2.5								
30	-18.9	2.5								
31	3.5							_		3.5
32	10	1						-8		
33		13								106
34		-10		3						1
35								14		17
36					4.5	22			37	2.5
37					14					34

PROGRESSIONS

ARITHMETIC PROGRESSION

							1	1	1	1
	a ₁	difference	a ₂	a 5	a 7	a 9	a ₈	a 10	a 12	a 11
	а	d	a+d	a+4d	a+6d	a+8d	a+7d	a+9d	a+11d	a+10d
1	1	2								
2	2	4								
3	3	6								
4	1	7								
5	3	5								
6	5		13							
7		-2								-13
8	5					77				
9	1								12	
10	100						590			
11									-230	-200
12					3					7
13	-1					-5				
14					14			20		
15	-7	-2								
16	1									2
17	0						10.5			
18									2	2
19	10		20							
20	-2	0								
21								-23	-29	
22				1	2					
23	-1.25								-4	-3.75
24						-13	-11			
25				11	19					
26				5			8.3			
27					25			34		
28				-10					4	
29	46	-3								
30							-1.4			6.1
31									3.5	3.5
32							-11			-20
33	2									132
34									-87	-77
35							15.5	18.5		
36					32				57	
37						2.5				
					26	34				

	PROGRESSIONS										
			Al	RITHMETIC PROGR	.						
	a ₁	Difference	Term	$a_n = n^{th} term$	$S_n = \text{sum of } n^{th} \text{ terms}$						
	a	d	n	a + (n -1)d	$\frac{n}{2}$ +[2a + (n -1)d]						
1	1	2	10	19							
2	2	4	12	46							
3	3	6	8	45							
4	1	7	16	106							
5	3	5	11	53							
6	5	8	8	61							
7	7	-2	6	-3							
8	5	9	9	77							
9	1	1	10	10							
10	2	8	15	114							
11	5	-4	10	-31							
12	21	-3	35	-81							
13	3	1	20	22							
14	5	6	22	131							
15	7	3	8	28							
16	-18		10	0							
17		-3	18	-5							
18	-18.9	2.5		3.6							
19	3.5	0	105								
20	10	-3	30	-77							
21	1	1	50	50							
22	1	1	100	100							
23	1	1	1000	1000							
24	16	-5	23	-94							
25	10		14		1050						
26	21	-3			78						
27	2	5	10	47							
28	-37	4	12	7							
29	0.6	1.1	100	109.5							
30	5	3		50							
31	7		13	35							
32		3	12								
33	4	3	12	37							
34			10		125						
35	4	8	12								
			1								

PROGRESSIONS

GEOMETRIC PROGRESSION

						Ratio				Ratio	is it
S.NO	aı	a ₂	a 3	a 4	a₅	$\frac{a_2}{a_1}$	$\underline{a_3}$	$\frac{a_4}{a_3}$	$\frac{a_5}{}$	Equal	G.P
						$\boldsymbol{a_1}$	$\boldsymbol{a_2}$	a_3	$\overline{a_4}$		
1	2	4	8	16	32						
2	3	9	27	81	243						
3	5	25	125	625	3125						
4	4	16	64	256	1024						
5	-2	4	-8	16	-32						
6	-3	9	-27	81	-243						
7	-5	25	-125	625	-3125						
8	1	1	1	1	1						
9	6	36	216	1296	7776						
10	-6	36	-216	1296	-7776						
11	7	49	343	2401	16807						
12	-7	49	-343	2401	-16807						
13	8	64	512	4096	32768						
14	-4	16	-64	256	-1024						
15	9	81	729	6561	59049						
16	10	100	1000	10000	100000						
17	-9	81	-729	6561	-59049						
18	-10	100	-1000	10000	-100000						
19	√2	2	2√2	4	4√2						
20	√3	3	3√3	9	9√3						
21	12	144	1728	20736	248832						
22	-12	144	-1728	20736	-248832						
23	14	196	2744	38416	537824						
24	16	256	4096	65536	1048576						
25	18	324	5832	104976	1889568						
26	20	400	8000	160000	3200000						
27	13	169	2197	28561	371293						
28	15	225	3375	50625	759375						
29	17	289	4913	83521	1419857						
30	19	361	6859	130321	2476099						
K.SREE	NIVASA	RAJU		9441637668	ZPHS	N.R .PALL	.l			PAGE	54

PROGRESSIONS

GEOMETRIC PROGRESSION

	a ₁	Ratio	a 2	a₃	a 4	a 5	a 6
	а	r	a.r	a. r^2	$a.r^3$	$a.r^4$	a. r^5
1	1	2					
2	2	4					
3	3	6					
4	1	7					
5	3	5					
6	5	8					
7	7	-2					
8	5	9					
9	1	1					
10	2	8					
11	1	9					
12	1	0.5					
13	0.5	2					
14	3	1					
15	6	2					
16	1	-1					
17	-4	5					
18	3	2					
19	256	-0.5					
20	25	-0.2					
21	3	2					
22	64	-0.5					
23	6	3					
24	4	2					
25	-1	3					
26	2	-3					
27	2	4					
28	9	-4					
29	8	0.5					
30	12	-6					
31	9	3					
32	3	9					
33	-2	-2					
34	8	2.5					
35	7	3					

ZPHS N.R.PALLI

PAGE 55

K.SREENIVASA RAJU

9441637668

				PROGRES			
		 	GE	OMETRIC PI	ROGRESSION		1
	a 1	Ratio	a 2	a 3	a 4	a 5	a 6
	а	r	a.r	a. r^2	$a.r^3$	$a.r^4$	a. r^5
1	2						2
2	2					32	
3		3			81		
4						256	1024
5				75		1875	
6		8					131072
7				20	-40		
8	5		20				
9						625	3125
10			14	98			
11	1						59049
12	1	0.5					
13	0.5						16
14	3	1					
15					32		128
16	1			1			
17	-4					-2500	
18	3					48	
19	256					16	
20	25					0.04	
21	9				72	144	
22	64					4	
23					162		
24	3				24		
25				-9			-243
26				18			-486
27			8		128		
28	9				-576		
29		0.5		1.75			
30	12		-72				
31				81	243		
32				243	2187		
33		-2	4				
34				6.25	15.625		
35	7			33			1701

ZPHS N.R.PALLI

PAGE 56

K.SREENIVASA RAJU

9441637668

Distance between two points

S.NO	Points	Distance between two points	ANS
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	
1	(3,8) (6,8)	•	
2	(-4,-3) (-8,-3)		
3	(3,4) (3,8)		
4	(-5,-8) (-5,-12)		
5	(2,0) (0,4)		
6	(0,5) (12,0)		
7	(0,0) (7,4)		
8	(0,0) (x,y)		
9	(4,3) (8,6)		
10	(7,8) (-2,3)		
11	(-8,6) (2,0)		
12	(5,2) (-4,-1)		
13	(1,-3) (-4,4)		
14	(4,2) (7,5)		
15	(7,5) (9,7)		
16	(4,2) (9,7)		
17	(3,2) (-2,-3)		
18	(-2,-3) (2,3)		
19	(3,2) (2,3)		
20	(1,7) (4,2)		
21	(4,2) (-1,-1)		
22	(-1,-1) (-4,4)		
23	(-4,4) (1,7)		
24	(1,7) (-1,-1)		
25	(3,1) (6,4)		
26	(6,4) (8,6)		
27	(2,3) (4,1)		
28	(-5,7) (-1,3)		
29	(-2,-3) (3,2)		
30	(a,b) (-a,-b)		

Distance between two points

S.NO	Points	Distance between two points	ANS
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	
1	(1,5) (2,3)	·	
2	(2,3) (-2,-1)		
3	(-2,-1) (1,5)		
4	(5,-2) (7,-2)		
5	(2,0) (0,4)		
6	(5,-2) (6,4)		
7	(5,-2) (7,2)		
8	(6,4) (7,-2)		
9	(a,0) (-a,0)		
10	(-a,0) (0,a√3)		
11	(a,0) (0,a√3)		
12	(-7,-3) (5,10)		
13	(5,10) (15,8)		
14	(15,8) (3,-5)		
15	(-7,-3) (3,-5)		
16	(-7,-3) (15,8)		
17	(5,10) (3,-5)		
18	(-4,-7) (-1,2)		
19	(-1,2) (8,5)		
20	(8,5) (5,-4)		
21	(5,-4) (-4,-7)		
22	(-4,-7) (8,5)		
23	(-1,2) (5,-4)		
24	(1,7) (-1,-1)		
25	(-1,-2) (1,0)		
26	(1,0) (-1,2)		
27	(-1,2) (-3,0)		
28	(-3,0) (-1,-2)		
29	(-1,-2) (-1,2)		
30	(1,0) (-3,0)		

Distance between two points

S.NO	Points	Distance between two points	ANS
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	
1	(-3,5) (1,10)	,	
2	(1,10) (3,1)		
3	(3,1) (-1,-4)		
4	(-1,-4) (-3,5)		
5	(1,10) (-1,-4)		
6	(-3,5) (3,1)		
7	(5,-2) (7,-2)		
8	(6,4) (7,-2)		
9	(a,0) (-a,0)		
10	(-a,0) (0,a√3)		
11	(a,0) (0,a√3)		
12	(-7,-3) (5,10)		
13	(5,10) (15,8)		
14	(15,8) (3,-5)		
15	(-7,-3) (3,-5)		
16	(-7,-3) (15,8)		
17	(5,10) (3,-5)		
18	(-4,-7) (-1,2)		
19	(-1,2) (8,5)		
20	(8,5) (5,-4)		
21	(5,-4) (-4,-7)		
22	(-4,-7) (8,5)		
23	(-1,2) (5,-4)		
24	(1,7) (-1,-1)		
25	(-1,-2) (1,0)		
26	(1,0) (-1,2)		
27	(-1,2) (-3,0)		
28	(-3,0) (-1,-2)		
29	(-1,-2) (-1,2)		
30	(1,0) (-3,0)		
			I

FIND THE **SLOPE** OF THE FOLLOWING

S.NO	Points	SLOPE	ANS
	$(x_1, y_1), (x_2, y_2)$	SLOPE (m) = $\frac{y_2 - y_1}{x_2 - x_1}$	
1	(3,8) (6,8)	$x_{2,-}x_{1,}$	
2	(-4,-3) (-8,-3)		
3	(3,4) (3,8)		
4	(-5,-8) (-5,-12)		
5	(2,0) (0,4)		
6	(0,5) (12,0)		
7	(0,0) (7,4)		
8	(0,0) (x,y)		
9	(4,3) (8,6)		
10	(7,8) (-2,3)		
11	(-8,6) (2,0)		
12	(5,2) (-4,-1)		
13	(1,-3) (-4,4)		
14	(4,2) (7,5)		
15	(7,5) (9,7)		
16	(4,2) (9,7)		
	(3,2) (-2,-3)		
18	(-2,-3) (2,3)		
19	(3,2) (2,3)		
20	(1,7) (4,2)		
21	(4,2) (-1,-1)		
22	(-1,-1) (-4,4)		
23	(-4,4) (1,7)		
24	(1,7) (-1,-1)		
25	(3,1) (6,4)		
26	(6,4) (8,6)		
27	(2,3) (4,1)		
28	(-5,7) (-1,3)		
29	(-2,-3) (3,2)		
30	(a,b) (-a,-b)		

K.SREENIVASA RAJU

9441637668

ZPHS N.R.PALLI

PAGE 60

FIND THE SLOPE OF THE FOLLOWING

S.NO	Points	SLOPE	S.NO	Points	
	$(x_1, y_1), (x_2, y_2)$	SLOPE (m) = $\frac{y_2 - y_1}{x_{2,-} x_{1,-}}$		$(x_{1}, y_{1}), (x_{2}, y_{2})$	SLOPE (m) = $\frac{y_2 - y_1}{x_2 - x_1}$
1	(1,5) (2,3)		1	(-3,5) (1,10)	_, _,
2	(2,3) (-2,-1)		2	(1,10) (3,1)	
3	(-2,-1) (1,5)		3	(3,1) (-1,-4)	
4	(5,-2) (7,-2)		4	(-1,-4) (-3,5)	
5	(2,0) (0,4)		5	(1,10) (-1,-4)	
6	(5,-2) (6,4)		6	(-3,5) (3,1)	
7	(5,-2) (7,2)		7	(5,-2) (7,-2)	
8	(6,4) (7,-2)		8	(6,4) (7,-2)	
9	(a,0) (-a,0)		9	(a,0) (-a,0)	
10	(-a,0) (0,a√3)		10	(-a,0) (0,a√3)	
11	(a,0) (0,a√3)		11	(a,0) (0,a√3)	
12	(-7,-3) (5,10)		12	(-7,-3) (5,10)	
13	(5,10) (15,8)		13	(5,10) (15,8)	
14	(15,8) (3,-5)		14	(15,8) (3,-5)	
15	(-7,-3) (3,-5)		15	(-7,-3) (3,-5)	
16	(-7,-3) (15,8)		16	(-7,-3) (15,8)	
17	(5,10) (3,-5)		17	(5,10) (3,-5)	
18	(-4,-7) (-1,2)		18	(-4,-7) (-1,2)	
19	(-1,2) (8,5)		19	(-1,2) (8,5)	
20	(8,5) (5,-4)		20	(8,5) (5,-4)	
21	(5,-4) (-4,-7)		21	(5,-4) (-4,-7)	
22	(-4,-7) (8,5)		22	(-4,-7) (8,5)	
23	(-1,2) (5,-4)		23	(-1,2) (5,-4)	
24	(1,7) (-1,-1)		24	(1,7) (-1,-1)	
25	(-1,-2) (1,0)		25	(-1,-2) (1,0)	
26	(1,0) (-1,2)		26	(1,0) (-1,2)	
27	(-1,2) (-3,0)		27	(-1,2) (-3,0)	
28	(-3,0) (-1,-2)		28	(-3,0) (-1,-2)	
29	(-1,-2) (-1,2)		29	(-1,-2) (-1,2)	
30	(1,0) (-3,0)		30	(1,0) (-3,0)	

Find the mid point of the following.

S.NO	Points	MID POINT	ANS
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	MID POINT= $(\frac{x_{1,}+x_{2}}{2}, \frac{y_{1,}+y_{2}}{2})$	
1	(3,8) (6,8)		
2	(-4,-3) (-8,-3)		
3	(3,4) (3,8)		
4	(-5,-8) (-5,-12)		
5	(2,0) (0,4)		
6	(0,5) (12,0)		
7	(0,0) (7,4)		
8	(0,0) (x,y)		
9	(4,3) (8,6)		
10	(7,8) (-2,3)		
11	(-8,6) (2,0)		
12	(5,2) (-4,-1)		
13	(1,-3) (-4,4)		
14	(4,2) (7,5)		
15	(7,5) (9,7)		
16	(4,2) (9,7)		
17	(3,2) (-2,-3)		
18	(-2,-3) (2,3)		
19	(3,2) (2,3)		
20	(1,7) (4,2)		
21	(4,2) (-1,-1)		
22	(-1,-1) (-4,4)		
23	(-4,4) (1,7)		
24	(1,7) (-1,-1)		
25	(3,1) (6,4)		
26	(6,4) (8,6)		
27	(2,3) (4,1)		
28	(-5,7) (-1,3)		
29	(-2,-3) (3,2)		
30	(a,b) (-a,-b)		

Find the mid point of the following.

S.NO	Points	MID POINT	S.NO	Points	MID POINT
	(x_1, y_1) (x_2, y_2)	$\left(\frac{x_{1,}+x_{2}}{2},\frac{y_{1,}+y_{2}}{2}\right)$		(x_1, y_1) (x_2, y_2)	$(\frac{x_{1,}+x_{2}}{2},\frac{y_{1,}+y_{2}}{2})$
1	(1,5) (2,3)		1	(-3,5) (1,10)	
2	(2,3) (-2,-1)		2	(1,10) (3,1)	
3	(-2,-1) (1,5)		3	(3,1) (-1,-4)	
4	(5,-2) (7,-2)		4	(-1,-4) (-3,5)	
5	(2,0) (0,4)		5	(1,10) (-1,-4)	
6	(5,-2) (6,4)		6	(-3,5) (3,1)	
7	(5,-2) (7,2)		7	(5,-2) (7,-2)	
8	(6,4) (7,-2)		8	(6,4) (7,-2)	
9	(a,0) (-a,0)		9	(a,0) (-a,0)	
10	(-a,0) (0,a√3)		10	(-a,0) (0,a√3)	
11	(a,0) (0,a√3)		11	(a,0) (0,a√3)	
12	(-7,-3) (5,10)		12	(-7,-3) (5,10)	
13	(5,10) (15,8)		13	(5,10) (15,8)	
14	(15,8) (3,-5)		14	(15,8) (3,-5)	
15	(-7,-3) (3,-5)		15	(-7,-3) (3,-5)	
16	(-7,-3) (15,8)		16	(-7,-3) (15,8)	
17	(5,10) (3,-5)		17	(5,10) (3,-5)	
18	(-4,-7) (-1,2)		18	(-4,-7) (-1,2)	
19	(-1,2) (8,5)		19	(-1,2) (8,5)	
20	(8,5) (5,-4)		20	(8,5) (5,-4)	
21	(5,-4) (-4,-7)		21	(5,-4) (-4,-7)	
22	(-4,-7) (8,5)		22	(-4,-7) (8,5)	
23	(-1,2) (5,-4)		23	(-1,2) (5,-4)	
24	(1,7) (-1,-1)		24	(1,7) (-1,-1)	
25	(-1,-2) (1,0)		25	(-1,-2) (1,0)	
26	(1,0) (-1,2)		26	(1,0) (-1,2)	
27	(-1,2) (-3,0)		27	(-1,2) (-3,0)	
28	(-3,0) (-1,-2)		28	(-3,0) (-1,-2)	
29	(-1,-2) (-1,2)		29	(-1,-2) (-1,2)	
30	(1,0) (-3,0)		30	(1,0) (-3,0)	

(Coordinate Geometry	Find the AREA of the following.				
S.NO	$(x_1, y_1), (x_2, y_2)(x_3, y_3)$	AREA OF A TRIANGLE=	ANS sq			
1	(1,-1),(-4,6),(-3,-5)	$\frac{1}{2} x_1(y_2-y_3)+ x_2(y_3-y_1)+x_3(y_1-y_2) $	UNITS			
2	(5,2),(4,7),(7,-4)					
3	(5,2),(3,-5),(-5,-1)					
4	(6,-6),(3,-7),(3,3)					
5	(-5,7),(-4,-5),(-1,-6)					
6	(-5,7), (-1,-6)(4,5)					
7	(0,-1),(2,1),(0,3)					
8	(0,-1),(0,3), (-2,1)					
9	(2,0),(1,2),(1,6)					
10	(3, 1),(5,0),(1,2)					
11	(1,-1),(-4,6),(-3,-5)					
12	(-1.5,3),(6,2),(-3,4)					
13	(1,-1),(4,1),(-2,-3)					
14	(1,-1),(2,3),(2,0)					
15	(1,-6),(3,-4),(4,-3)					

(Coordinate Geometry	Find the AREA of the following.				
S.NO	$(x_{1}, y_{1}), (x_{2}, y_{2})(x_{3}, y_{3})$	AREA OF A TRIANGLE=	ANS sq			
1	(1,2),(-1,-1),(-3,-4)	$\frac{1}{2} x_1(y_2-y_3)+ x_2(y_3-y_1)+x_3(y_1-y_2) $	UNITS			
2	(2,3),(-1,0),(2,-4)					
3	(-5,-1),(3,-5),(5,2)					
4	(0,0),(3,0),(0,2)					
5	(7,-2),(5,1),(3,4)					
6	(8,1), (3,-4)(2,-5)					
7	(5,0),(0,0),(6,0)					
8	(-5,0),(0,0),(-6,0)					
9	(-5,0),(0,0),(6,0)					
10	(5,0),(0,0),(-6,0)					
11	(a,0),(0,0),(b,0)					
12	(x,0),(0,0),(y,0)					
13	(8,0),(0,0),(4,0)					
14	(-8,0),(0,0),(-4,0)					
15	(8,0),(0,0),(-4,0)					

ZPHS N.R.PALLI

PAGE 65

K.SREENIVASA RAJU

9441637668

Find the CENTROID of the following.

S.NO	$(x_{1}, y_{1}), (x_{2}, y_{2})(x_{3}, y_{3})$		CENTROID	ANS
	(M1, 91) (M2, 92) (M3, 93)	(x,y)=	$(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})$	
1	(1,-1),(-4,6),(-3,-5)			
2	(5,2),(4,7),(7,-4)			
3	(5,2),(3,-5),(-5,-1)			
4	(6,-6),(3,-7),(3,3)			
5	(-5,7),(-4,-5),(-1,-6)			
6	(-5,7), (-1,-6)(4,5)			
7	(0,-1),(2,1),(0,3)			
8	(0,-1) ,(0,3), (-2,1)			
9	(2,0),(1,2),(1,6)			
10	(3, 1),(5,0),(1,2)			
11	(1,-1),(-4,6),(-3,-5)			
12	(-1.5,3),(6,2),(-3,4)			
13	(1,-1),(4,1),(-2,-3)			
14	(1,-1),(2,3),(2,0)			
15	(1,-6),(3,-4),(4,-3)			

Find the CENTROID of the following.

S.NO	$(x_{1}, y_{1}), (x_{2}, y_{2})(x_{3}, y_{3})$	CENTROID = $(x,y) = (\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3})$	ANS
1	(1,2),(-1,-1),(-3,-4)		
2	(2,3),(-1,0),(2,-4)		
3	(-5,-1),(3,-5),(5,2)		
4	(0,0),(3,0),(0,2)		
5	(7,-2),(5,1),(3,4)		
6	(8,1), (3,-4)(2,-5)		
7	(5,0),(0,0),(6,0)		
8	(-5,0),(0,0),(-6,0)		
9	(-5,0),(0,0),(6,0)		
10	(5,0),(0,0),(-6,0)		
11	(a,0),(c,0),(b,0)		
12	(x,0),(0,0),(y,0)		
13	(8,0),(6,0),(4,0)		
14	(-8,0),(0,0),(-4,0)		
15	(8,0),(0,0),(-4,0)		

Section formula.

Find the point which divides the line segment joining the points internally in the ratio given below.

ill the ratio given below.					
S.NO	Coordinates	Ratio	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right)$	P(x,y)	
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	$m_1 : m_2$	m_1+m_2 m_1+m_2		
	,				
1	(4, -3), $(8, 5)$	3:1			
-	(1, 5),(5,5)	3.1			
2	(3, 0), (-1, 4)	1:1			
3	(3, 5),(8, 10)	2:3			
	(0) 0/)(0) 10/	2.5			
4	(2,7), $(12,-7)$	1:1			
5	(4, 2),(6, 5)	2:1			
	(1, 2),(0, 3)	2.1			
6	(6, 5),(1, 4)	2:1			
7	(1, 4),(4, 2)	2:1			
'	(±, ±,)(±, =,	2.1			
8	(-6, 10), $(3, -8)$	2:7			
9	(2,-2),(-7,4)	2:1			
	(-) -//(/) -/	2.1			
10	(2,-2), $(-7,4)$	1:2			
11	(2, 6),(-4, 8)	2:1			
	(2, 0),(1,0)	2.1			
12	(2, 6),(-4, 8)	1:2			
12	(-3, -5), (-6, -8)	2:1			
13		~. ±			
14	(-3, -5), $(-6, -8)$	1:2			
1 [(-1,7), $(4,-3)$	2.2			
12	(1, / j ,(1 , — 3 j	2:3			

Section formula.

Find the point which divides the line segment joining the points internally in the ratio given below.

S.NO	Coordinates	Ratio	$m_1 x_2 + m_2 x_1 m_1 y_2 + m_2 y_1$	P(x,y)
	$(x_{1,}, y_{1}), (x_{2,}, y_{2})$	$m_1:m_2$	$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	
1	(4, -1),(-2, -3)	2:1		
2	(4, -1),(-2, -3)	1:2		
3	(-3, 10),(6, -8)	2:7		
4	(-2, -2),(2, -4)	3:4		
5	(-2, -2),(2, -4)	4:3		
6	(-4, 0), (0, -6)	1:1		
7	(-4, 0),(0, -6)	2:2		
8	(-4, 0),(0, -6)	3:3		
9	(-2, 2),(2, 8)	1:1		
10	(2, -2),(-7, 4)	2:2		
11	(a+b,a-b) , $(a-b,a-b)$	3:2		
12	(2, 6),(-4, 8)	3:2		
13	(-3, -5),(-6, -8)	2:3		
14	(-3, -5),(-6, -8)	5:2		
15	(-1, 7),(4, -3)	2:5		

Coordinate Geometry FIND THE SLOPE OF THE FOLLOWING

S.NO	Points		/- linates			x- linates	Y . Y .	Slope(m) = $y_2 - y_1$
		y ₁	<i>y</i> ₂	$y_2 - y_1$	$x_{1,}$	$x_{2,}$	x_2 - x_1	$\frac{y_2-y_1}{x_2-x_1}$
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	y_1	<i>y</i> ₂	<i>y</i> ₂ - <i>y</i> ₁	$x_{1,}$	$x_{2,}$	x_2 - x_1	$\frac{y_2-y_1}{x_2-x_1}$
1	(3,8) (6,8)							x ₂ x ₁
2	(-4,-3) (-8,-3)							
3	(3,4) (3,8)							
4	(-5,-8) (-5,-12)							
5	(2,0) (0,4)							
6	(0,5) (12,0)							
7	(0,0) (7,4)							
8	(0,0) (x,y)							
9	(4,3) (8,6)							
10	(7,8) (-2,3)							
11	(-8,6) (2,0)							
12	(5,2) (-4,-1)							
13	(1,-3) (-4,4)							
14	(4,2) (7,5)							
15	(7,5) (9,7)							
16	(4,2) (9,7)							
17	(3,2) (-2,-3)							
18	(-2,-3) (2,3)							
19	(3,2) (2,3)							
20	(1,7) (4,2)							
21	(4,2) (-1,-1)							
22	(-1,-1) (-4,4)							
23	(-4,4) (1,7)							
24	(1,7) (-1,-1)							
25	(3,1) (6,4)							
26	(6,4) (8,6)							
27	(2,3) (4,1)							
28	(-5,7) (-1,3)							
29	(-2,-3) (3,2)							
30	(a,b) (-a,-b)							

K.SREENIVASA RAJU

Coordinate Geometry FIND THE SLOPE OF THE FOLLOWING

S.NO	Points	SLOPE	S.NO	Points	SLOPE
	$(x_{1}, y_{1}), (x_{2}, y_{2})$	SLOPE (m) = $\frac{y_2 - y_1}{x_2 - x_1}$		$(x_1, y_1), (x_2, y_2)$	SLOPE (m) = $\frac{y_2 - y_1}{x_{2} - x_{1}}$
1	(1,5) (2,3)	2, 11,	1	(-3,5) (1,10)	2, 11,
2	(2,3) (-2,-1)		2	(1,10) (3,1)	
3	(-2,-1) (1,5)		3	(3,1) (-1,-4)	
4	(5,-2) (7,-2)		4	(-1,-4) (-3,5)	
5	(2,0) (0,4)		5	(1,10) (-1,-4)	
6	(5,-2) (6,4)		6	(-3,5) (3,1)	
7	(5,-2) (7,2)		7	(5, 2) (7,-2)	
8	(6,4) (7,-2)		8	(6,4) (7, 2)	
9	(a,0) (-a,0)		9	(a,0) (a,0)	
10	(-a,0) (0,a√3)		10	(a,0) (0,a√3)	
11	(a,0) (0,a√3)		11	(-a,0) (0,a√3)	
12	(-7,-3) (5,10)		12	(-7, 3) (5,10)	
13	(5,10) (15,8)		13	(-5,10) (15,8)	
14	(15,8) (3,-5)		14	(15,8) (-3,-5)	
15	(-7,-3) (3,-5)		15	(-7,-3) (-3,-5)	
16	(-7,-3) (15,8)		16	(-7,-3) (-15,8)	
17	(5,10) (3,-5)		17	(5,10) (-3,-5)	
18	(-4,-7) (-1,2)		18	(-4, 7) (-1,2)	
19	(-1,2) (8,5)		19	(-1,2) (-8,5)	
20	(8,5) (5,-4)		20	(8,5) (-5,-4)	
21	(5,-4) (-4,-7)		21	(-5,-4) (-4,-7)	
22	(-4,-7) (8,5)		22	(-4,-7) (-8,5)	
23	(-1,2) (5,-4)		23	(-1,2) (-5,-4)	
24	(1,7) (-1,-1)		24	(-1,7) (-1,-1)	
25	(-1,-2) (1,0)		25	(-1,-2) (-1,0)	
26	(1,0) (-1,2)		26	(-1,0) (-1,2)	
27	(-1,2) (-3,0)		27	(-1,-2) (-3,0)	
28	(-3,0) (-1,-2)		28	(3,0) (-1,-2)	
29	(-1,-2) (-1,2)		29	(-1, 2) (-1,2)	
30	(1,0) (-3,0)		30	(1,0) (3,0)	

Similar Triangles

Two polygons of the same number of sides are similar if their corresponding angles are equal and their corresponding sides are in the same ratio or proportion.

A polygon in which all sides and angles are equal is called a regular polygon. All squares are similar, all equalateral triangles are similar Circles with same radius are congruent and those with different radii are not congruent.

But, as all circles have same shape, they are all similar.

We can say that all congruent figures are similar but all similar figures need not be congruent.

two triangles $\triangle ABC$ and $\triangle DEF$ are similar if

(i)
$$\angle A = \angle D$$
, $\angle B = \angle E$, $\angle C = \angle F$ (or)

(ii)
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$
.

A, B and C correspond to the vertices D, E and F respectively. Symbolically, we write the similarity of these two triangles as $\triangle ABC \sim \triangle DEF$ and read

as $\triangle ABC$ is similar to $\triangle DEF$. The symbol '~' stands for 'is similar to'

SIMILARITY OF TRIANGLES

ABC and DEF such that AB = 3 cm, BC = 6 cm, CA = 8 cm. DE = 4.5 cm, EF = 9 cm and FD = 12 cm.

	3 cm	$\frac{AB}{DF} = \frac{3}{12} = \frac{2}{3}$ $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ The triangles are similar
2	ABC and DEF such that AB = 9 cm, BC = 6 cm, CA = 8 cm, DE = 4.5 cm, EF = 9 cm and FD = 12 cm	

K.SREENIVASA RAJU ZPHS N.R.PALLI PAGE 72 9441637668

3	ABC and DEF such that AB = 9 cm, BC = 6 cm, CA = 8 cm, DE = 4.5 cm, EF = 3 cm and FD = 4 cm	
4	XYZ and DEF such that XY = 9 cm, YZ = 6 cm, XZ= 8 cm, DE = 4.5 cm, EF = 5 cm and FD = 4 cm	
5		
6 K.SRI	EENIVASA RAJU 9441637668 ZPHS N.R .PALLI	PAGE 73

Parts of Circles

Center – the middle of the circle. All points on the circle bare the same distance from the center.

Radius – A line segment with one endpoint at the center and the other endpoint on the circle. The term "radius" is also used to refer to the distance from the center to the points on the circle.

Diameter – A line segment with endpoints on the circle that passes through the center.

Arc – A path along a circle.

Minor Arc – A path along the circle that is less than 180°.

Major Arc – A path along the circle that is greater than 180°.

Semicircle – A path along a circle that equals 180°.

Sector – A region inside a circle that is bounded by two radii and an arc.

Secant Line – A line that intersects the circle in exactly two points.

Tangent Line- A line that intersects the circle in exactly one point.

Chord – A line segment with endpoints on the circle that does not pass through the center.

CIRCLE

$$d = Diameter =$$
 ; $r = \frac{d}{2}$ (or) $d = 2 r$

Area of a Circle = πr^2

$$= \pi r^2$$

Circumference of a Circle = $2 \pi r$ (or) πd

S.NO	r = Radius	d=2r		Area of a Circle
	Kaulus	=Diameter	(or) π d	= π r ²
	cm	cm	CM	Sq cm
1	14			
2	7			
3	21			
4		7		
5	3.5			
6	9			
7		4		
8	5			
9		12		
10	7			
11	8			
12		20		
13	9			
14	12			
15		22		
16	13			
17		28		
18	15			
19	16			
20		32		
21	20			
22		36		
23	15			
24	14			
25		56		

SEMI CIRCLE

r = Radius = d = Diameter =

Area of a Semi Circle

Circumference of a Semi Circle = $\pi r + 2 r$ (or) $\frac{36}{7} r$

	r	d	Circumference of a Circle = $2 \pi r$	Area of a Circle
	Radius	Diameter	(or) π d	= π r ²
	cm	cm	cm	Sq cm
1	14			
2	7			
3	21			
4	7.7			
5	3.5			
6	9			
7	4			
8	5			
9	6			
10	77			
11	8			
12		20		
13	9			
14	12			
15	11			
16	13			
17	14			
18	15			
19		32		
20	16			
21	20			
22	18			
23	15			
24		28		
25	28			

Area of a Circular Path or Area of a ring

The Area of the circular path is the difference of Area of outer circle and inner circle

Area of the circular path = Area of outer circle — Area of inner circle

$$= \Pi R^{2} - \Pi r^{2} = \Pi (R^{2} - r^{2}) = \Pi (R + r) (R - r)$$

	R	r	Area of the circular path=	Area of the circular path=
	Radius	Radius	Π (R^2 - r^2)	$\Pi(R+r)(R-r)$
	cm	cm	Sq cm	Sq cm
1	14	7		
2	21	14		
3	35	28		
4	28	14		
5	X	y		
6	70	7		
7	70	42		
8	7	3.5		
9	14	10.5		
10	21	17.5		
11	8	1		
12	16	2		
13	16	9		
14	9	2		
15	19	5		r

Length of the arc

 $(I) = \frac{x}{360^{\circ}} \times 2 \pi r$ or $= \frac{x}{x} \times \pi r^{2}$

Area of Sector

where x° is the angle subtended by the arc of the sector

Surface Areas and Volumes

	0		Length of the arc	Area of Sector
	χ°	r	$(I) = \frac{x}{360^{\circ}} \times 2 \pi r$	$= \frac{x}{360^0} \times \pi r^2$
1	60°	21		
2	90°	14		
3	120°	21		
4	180°	7		
5	360°	7		
6	45°	28		
7	270°	14		
8	30°	42		
9				
10				

Surface Areas and Volumes

- 1. Cuboid and cube are regular prisms having six faces and of which four are lateral faces and the base and top.
- 2. If length of **cuboid** is *I*, breadth is 'b' and height is 'h' then,

Total surface area of a cuboid = 2 (lb + bh + lh)Lateral surface area of a cuboid = 2 h (l + b)Volume of a cuboid = lbh

3. If the length of the edge of a **cube** is '*I*' units, then

Total surface area of a cube $= 6 I^2$ Lateral surface area of a cube $= 4 I^2$ Volume of a cube $= I^3$

- 4. The volume of a **pyramid** is $\frac{1}{3}$ rd volume of a right prism if both have the same base and same height.
- 5. A cylinder is a solid having two circular ends with a curved surface area. If the line segment joining the centres of base and top is perpendicular to the base, it is called right circular cylinder.
- 6. If the radius of right circular cylinder is 'r' and height is 'h' then;

Curved surface area of a cylinder $= 2 \pi r h$ Total surface area of a cylinder $= 2\pi r (r + h)$ Volume of a cylinder $= \pi r^2 h$

- 7. Cone is a geometrical shaped object with circle as base, having a vertext at the top If the line segment joining the vertex to the centre of the base is perpendicular to the base, it is called right circular cone.
- 8. The length joining the vertex to any point on the circular base of the cone is called slant height (l) $l^2 = h^2 + r^2$
- 9. If 'r' is the radius, 'h' is the height, 'l' is the slant height of a **cone**, then Curved surface area of a cone = $\pi r l$

Total surface area of a cone $= \pi r (r + 1)$

- 10. The volume of a cone is $\frac{1}{3}$ rd the volume of a cylinder of the same base and same height volume of a cone = $\frac{1}{3} \pi r^2 h$
- 11. A sphere is an geometrical object formed where the set of points are equidistant from the fixed point in the space. The fixed point is called centre of the sphere and the fixed distance is called radius of the sphere.
- 12. If the radius of **sphere** is 'r' then,

Surface area of a sphere $= 4\pi r^{2}$ Volume of a sphere $= \frac{4}{3}\pi r^{3}$

13. A plane through the centre of a sphere divides it into two equal parts, each of which is called a **hemisphere**.

Curved surface area of a hemisphere $= 2\pi r^{2}$ Total surface area of a hemisphere $= 3\pi r^{2}$ Volume of a hemisphere $= \frac{2}{3}\pi r^{3}$

CUBE

No of Vertices = 8	Lateral Surface Area = 4 S ²
No of Edges = 12	Total surface Area = 6 S ²
No of Faces = 6	Volume = S ³

SIQ	(

	Side	Lateral Surface Area	Total surface Area	Volume		
S.NO	In CM	4 S ²	6 S ²	S³		
1	4					
2	5					
3	6					
4	7					
5	8					
6		324				
7		400				
8		484				
9		576				
10		676				
11			1176			
12			1350			
13			1536			
14			1734			
15			1944			
16				6859		
17				8000		
18				9261		
19				10648		
20				12167		
21		2304				
22		2500				
23		2704				
24	27					
25	28					
26			5046			
27			5400			
28			5766			
29				32768		
30				35937		
K.SREENIVASA RAJU 9441637668 ZPHS N.R .PALLI PAGE 7						

CUBOID

I = Length	
b = Breadth	
h = Height	

No of Vertices = 8	Lateral Surface Area = 2 h (l + b)
No of Edges = 12	Total surface Area = 2 (lb + b h + h l)
No of Faces = 6	Volume = I x b x h = lbh

	Length	Breadth	Height	Lateral Surface Area	Total surface Area	Volume
9		_				
S. NO	in CM	in CM	in CM	2 h (l+b) 2 (lb+bh+hl)		Ixbxh
	ı	b	h	Area in Sq cm (or) cm²	Area in Sq cm (or) cm ²	Area in Cubic cm (or) cm ³
1	2	3	4	<u> </u>	7.1.00 111 04 0111 (01) 0111	7 Hou in Guile em (ei) em
2	3	2	4			
3	4	5	6			
4	1	3	5			
5	2	5	4			
6	3	6	4	90		
7	4	7		44		
8	7	4		44		
9	7	6		130		
10	8	2		120		
11	9		5			
				110		
12	2		9	144		
13	1		5	100		
14	5		8	112		
15	2		8	176		
16		10	6			60
17	10		10			500
18	15	12				1800
19	5		15			750
20		6	9			162
21		8	12			384
22	6	12				1296
23	7	14				2058
24	8	_	24			3072
25	10		30			6000
K.SREENIVASA RAJU 9441637668 ZPHS N.R .PALLI PAGE 8						

CONE

l =Slant=

$$; \pi = \frac{22}{7}$$

Slant Height of the cone $1 = \sqrt{h^2 + r^2}$

Curved Surface area of the cone = $A = \pi r I$

Total Surface area of the cone = $\pi r(1+r)$

$$= \pi r(1+i)$$

Volume

$$\mathbf{v} = \frac{1}{3} \pi \mathbf{r}^2 \mathbf{h}$$

S.NO	1	h	r	Curved	Total	Volume
	Slant	height	radius	Surface area	Surface area	$\frac{1}{3} \pi r^2 h$
				$A = \pi r I$	π r(l+r)	3
	C.M	C.M	C.M	C.M ² / Square C.M	C.M ² / Square C.M	C.M³/ Cubic C.M
1	14	6	7			
2	7	9	14			
3	21	3	7			
4	7	6	21			
5	3.5	6	3.5			
6	9	12	14			
7	4	3	21			
8	5	3	14			
9	6	6	7			
10	7	6	28			

CYLINDER

$$\pi = \frac{22}{7}$$

Curved Surface area of a Cylinder $= 2 \pi r h$

Total Surface area of a Cylinder = $2 \pi r (r + h)$

Volume of a Cylinder = $\pi r^2 h$

$$= \pi r^2 h$$

S.NO	RADIUS	Height	Curved Surface area of a Cylinder = 2πrh	Total Surface area of a Cylinder = 2 π r (r + h)	Volume of a Cylinder = π r²h
1	7	6			
2	9	7			
3	14	7			
4	7	14			
5	21	14			
6	14	21			
7	7	12			
8	12	7			
9	14	11			
10	11	14			

SPHERE

$$\pi = \frac{22}{7}$$

Surface area of a sphere = $4 \pi r^2$

Volume of a sphere

$$=\frac{4}{3}\pi$$
r

S.NO	r = radius	Surface area of a sphere = 4 π r²	Volume of a sphere $= \frac{4}{3} \pi r^{3}$
	C.M	C.M²/ Square C.M	C.M³/ Cubic C.M
1	14		
2	7		
3	21		
4	7		
5	3.5		
6	9		
7	4		
8	5		
9	6		
10	7		

HEMISPHERE

$$\pi = \frac{22}{7}$$
$$= 2 \pi r^2$$

Surface area of a hemisphere

$$=2\pi r^2$$

Total Surface area of a hemisphere = $3 \pi r^2$

Volume of a hemisphere
$$=\frac{2}{3} \pi r^3$$

S.NO	r=radius	Surface area of a hemisphere = 2 π r ²	Surface area of a sphere = 3 π r²	Volume of a sphere $=\frac{2}{3} \pi r^3$
	C.M	C.M²/ Square C.M	C.M²/ Square C.M	C.M³/ Cubic C.M
1	14			
2	7			
3	21			
4	7			
5	3.5			
6	9			
7	4			
8	5			
9	6			
10	7			

CIRCLE

$$r = Radius$$
 $d = Diameter = ; $r = \frac{d}{2}$ (or) $d = 2$$

Area of a Circle = πr^2

Circumference of a Circle = $2 \pi r$ (or) πd

S.NO	r =	d=2r	Circumference of a Circle = $2 \pi r$	Area of a Circle
	Radius	=Diameter	$(or) \pi d =$	$= \pi r^2$
	cm	cm	ст	Sq cm
1	14			
2	7			
3	21			
4	7			
5	3.5			
6	9			
7	4			
8	5			
9	6			
10	7			

SEMI CIRCLE

r = Radius = d = Diameter =

Area of a Semi Circle

$$= \frac{\pi r^2}{2}$$

Circumference of a Semi Circle = $\pi r + 2 r$ (or) $\frac{36}{7}$ r

				7
S.NO	r	d	Circumference of a Circle = $2 \pi r$	Area of a Circle
	Radius	Diameter	(or) π d	= π r ²
	cm	cm	ст	Sq cm
1	14			
2	7			
3	21			
4	7			
5	3.5			
6	9			
7	4			
8	5			
9	6			
10	7			

10

ANGLE 0 AT A

6

SIN θ	Opposite side	
3114 0	Hypotenuse	
cos θ	Adjacent side	
CO3 6	Hypotenuse	
ταν θ	Opposite side	
IANO	Adjacent side	
COSEC θ	<u>Hypotenuse</u>	
COSEC 0	Opposite side	
SEC θ	<u>Hypotenuse</u>	
SEC 0	Adjacent side	
сот ө	Adjacent side	
COLA	Opposite side	

ſ		0
	SIN θ	Opposite side
		Hypotenuse
	cos θ	Adjacent side
	COS 6	Hypotenuse
8	TANO	Opposite side
	ΤΑΝ θ	Adjacent side
	COSEC θ	Hypotenuse
	COSEC 0	Opposite side
	SEC θ	<u>Hypotenuse</u>
	SEC 0	Adjacent side
	COT O	Adjacent side
	сот ө	Opposite side

SIN θ	Opposite side	
3114 0	Hypotenuse	
COS θ	Adjacent side	
CO3 0	Hypotenuse	
ταν θ	Opposite side	
IANO	Adjacent side	
	-	
COSEC A	<u>Hypotenuse</u>	
COSEC θ	Hypotenuse Opposite side	
COSEC θ SEC θ	Opposite side	
	Opposite side <u>Hypotenuse</u>	

	12	ταν θ	Opposite side	
		IANO	Adjacent side	
	COSEC θ		<u>Hypotenuse</u>	
			Opposite side	
		SEC θ	<u>Hypotenuse</u>	
	В	3LC U	Adjacent side	
		сот ө	Adjacent side	
		COTO	Opposite side	

NOTE: PUT A,B,C OR X,Y,Z OR P,Q,R NAME OF THE VERTICES

K.SREENIVASA RAJU ZPHS N.R.PALLI 9441637668 PAGE 84

C	SIN θ	Opposite side Hypotenuse	
	cos θ	Adjacent side Hypotenuse	
10 6	ΤΑΝ θ	Opposite side Adjacent side	
	COSEC θ	Hypotenuse Opposite side	
A B	SEC θ	Hypotenuse Adjacent side	
8 ANGLE 0 AT A	сот в	Adjacent side Opposite side	

	SIN θ	Opposite side Hypotenuse	
		пуроценизе	
	cos θ	Adjacent side	
	CO3 0	Hypotenuse	
15 9	ΤΑΝ θ	Opposite side	
	TANO	Adjacent side	
	COSEC θ	<u>Hypotenuse</u>	
A B	COSEC 0	Opposite side	
	SEC θ	<u>Hypotenuse</u>	
	310 0	Adjacent side	
12	сот ө	Adjacent side	
ANGLE 0 AT A	COLO	Opposite side	

Trigonometry

SIN θ	Opposite side
	Hypotenuse
COS θ	Adjacent side
CO3 0	Hypotenuse
ταν θ	Opposite side
TAICO	Adjacent side
COSEC θ	<u>Hypotenuse</u>
COSEC 0	Opposite side
SEC θ	<u>Hypotenuse</u>
SEC 0	Adjacent side
сот ө	Adjacent side
	Opposite side

SIN θ	Opposite side		
SIIN O	Hypotenuse		
cos θ	Adjacent side		
CO3 B	Hypotenuse		
ταν θ	Opposite side		
IANO	Adjacent side		
COSEC A	<u>Hypotenuse</u>		
COSEC θ	Opposite side		
SEC θ	<u>Hypotenuse</u>		
SEC 0	Adjacent side		
COT A	Adjacent side		
сот ө	Opposite side		

SIN θ	Opposite side		
SIN U	Hypotenuse		
COS θ	Adjacent side		
CO3 6	Hypotenuse		
ταν θ	Opposite side		
IANO	Adjacent side		
COSEC A	<u>Hypotenuse</u>		
COSEC θ	Hypotenuse Opposite side		
COSEC θ	Opposite side		
	Opposite side Hypotenuse		

С	0111.0	Opposite side	
' A	SIN θ	Hypotenuse	
	cos θ	Adjacent side	
	CO3 6	Hypotenuse	
25 7	ταν θ	Opposite side	
	IANO	Adjacent side	
	COSEC θ	<u>Hypotenuse</u>	
		Opposite side	
A B		<u>Hypotenuse</u>	
	JLC 0	Adjacent side	
24	сот ө	Adjacent side	
ANGLE 0 AT A	2010	Opposite side	

C			
_	SIN θ	Opposite side	
	SIN O	Hypotenuse	
	COS θ	Adjacent side	
	CO3 6	Hypotenuse	
29 21	ΤΑΝ θ	Opposite side	
	IANO	Adjacent side	
	COSEC θ	<u>Hypotenuse</u>	
	COSEC 0	Opposite side	
	SEC θ	<u>Hypotenuse</u>	
A B	SEC 0	Adjacent side	
20	сот ө	Adjacent side	
ANGLE 0 AT A		Opposite side	

	Trigonometry													
e side	t side	ınuse	θ	O.S	θ	A.S	θ	o.s	e ɔ	нү	θ	нү	θ	A.S
Opposite side	Adjacent side	Hypotenuse	θ NIS	нү	0 SOO	нү	9 NAT	A.S	ө эзсоэ	O.S	e DEC 6	A.S	COT 8	O.S
3	4	5	SIN θ	1	COS θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот в	_
4	3	5	SIN θ	_	COS θ	_	ΤΑΝ θ	_	COSEC θ	_	SEC θ	_	сот ө	_
6	8	10	SIN θ		cos θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот в	
8	6	10	SIN θ	-	cos θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот ө	
5	12	13	SIN θ	-	cos θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот ө	_
12	5	13	SIN θ	-	cos θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот ө	
9	12	15	SIN θ	_	cos θ	<u></u>	ΤΑΝ θ	<u></u>	COSEC θ		SEC θ		сот в	_
12	9	15	SIN θ	-	cos θ	_	ΤΑΝ θ	_	COSEC θ	_	SEC θ	_	сот ө	_
7	24	25	SIN θ		cosθ	<u> </u>	ΤΑΝ θ	<u></u>	COSEC θ	<u></u>	SEC θ		сот в	
24	7	25	SIN θ	_	cos θ		ΤΑΝ θ	_	COSEC θ	_	SEC θ	_	сот в	
20	21	29	SIN θ	_	cos θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот в	_
21	20	29	SIN θ	-	cos θ	_	ΤΑΝ θ	_	COSEC θ	_	SEC θ	_	сот ө	
15	20	25	SIN θ	_	cos θ		ΤΑΝ θ		COSEC θ		SEC θ	_	сот в	_
20	15	25	SIN θ		cos θ		ΤΑΝ θ		COSEC θ		SEC θ		сот ө	
	Орр	osit	e side	² + Ac	ljacent	t side²=	Hypot	tenuse²		K	SREEN	IIVAS	A RAJU	J

ZPHS N.R.PALLI

PAGE 88

K.SREENIVASA RAJU

9441637668

Trigonometry

Opposite side ² + Adjacent side² = Hypotenuse² Opposite side² = Hypotenuse² - Adjacent side² Adjacent side² = Hypotenuse² - Opposite side ²

Opposite	Adjacent		an. 0	Opposite side		Adjacent side		Opposite side
side	side	Hypotenuse	SIN 0	Hypotenuse	COS θ	Hypotenuse	ΤΑΝ θ	Adjacent side
3		5		_				
4	3			-		<u>-</u>		<u>-</u>
	8	10		_		_		_
	6	10		-		<u>-</u>		
5	12			-		_		-
12	5	13				<u>-</u>		<u>-</u>
9	12							_
12		15		-		-		-
7		25		-		-		-
24	7			_				
20		29						-
21	20			-		-		-
15	20							
	15	25		_		_		_

ZPHS N.R.PALLI

PAGE 89

K.SREENIVASA RAJU

9441637668

Trigonometry

Opposite side ² + Adjacent side² = Hypotenuse² Opposite side² = Hypotenuse² - Adjacent side² Adjacent side² = Hypotenuse² - Opposite side ²

Opposite	Adjacent	Hypotenuse	COSEC θ	Hypotenuse	SEC θ	Hypotenuse	сот ө	Adjacent side
side	side	пуросенизе	COSEC 0	Opposite side	SEC 0	Adjacent side	2010	Opposite side
3		5		_				_
4	3			-		-		-
7	3			-		-		-
	8	10		_		_		-
	6	10				-		-
5	12			_		_		_
12	5	13		-		-		-
9	12			_		_		_
12		15		-		-		-
7		25		-		-		-
	_	23		-		<u>-</u>		_
24	7			<u>-</u>		_		_
20		29		-		_		_
21	20			-				<u>-</u>
15	20							
	15	25		-		<u>-</u>		-

12 Some Applications of Trigonometry

Draw the diagrams for given data.

1	Line of sight: When an observer looks from a point O at an	given datai
	object P, then the line OP is called the line of sight. The angle of elevation of an object viewed, is the angle formed by the line of sight with the horizontal when it is above the horizontal level. i.e. the case when we raise	
	our head to look the object.	. ## /
	Line of sight	Angle of elevation
	Angle of elevation	
	∆ → → Harris a stall line a	
	Horizontal line	
2	The angle of depression of an object viewed, is the angle formed by the line of sight with the horizontal when it is below the horizontal level. i.e., the case	Horizontal line Of Angle of depression
	when we lower our head to look at the object. Horizontal line Angle of depression	Line of sigh,
	Horizontal line	- Tana 1811,
	Angle of depression Line of sight	
		The familia
_	The top of a clock tower is observed at angle	
3	of elevation of α° and the foot of the tower is	
	at the distance, of d meters from the observer. Draw the diagram for this data.	
	Draw the diagram for this data.	
4	Rinky observes a flower on the ground from the	
	balcony of the first floor of a building at an angle of depression, β °. The height of the first floor of the	
	building is x meters. Draw the diagram for this data	
5	A large balloon has been tied with a rope and it is	
	floating in the air. A person has observed the balloon from the top of a building at angle of elevation of θ_1	
	and foot of the rope at an angle of depression of θ_2 . The height of the building is h feet. Draw the diagram	
	for this data	
6	A boy observed the top of an electric pole to be at	
	an angle of elevation of 60° when the observation point is 8 meters away from the foot of the pole.	
	Find the height of the pole.	
K.SRE	ENIVASA RAJU 9441637668 ZPHS N.R .PA	LLI PAGE 91

7	Rajender observes a person standing on the ground from a helicopter at an angle of depression 45°. If the helicopter flies at a height of 50 meters from the ground, what is the distance of the person from Rajender?	
8	Two men on either side of a temple of 30 meter height observe it at the angles of elevation 30° and 60° respectively. Find the distance between the two men.	
9	A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression 30°. The car is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.	
10	A tower stands vertically on the ground. From a point which is 15 meter away from the foot of the tower, the angle of elevation of the top of the tower is 45°. What is the height of the tower?	
11	A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground by making 30° angle with the ground. The distance between the foot of the tree and the top of the tree on the ground is 6m. Find the height of the tree before falling down.	
12	. A contractor wants to set up a slide for the children to play in the park. He wants to set it up at the height of 2 m and by making an angle of 30° with the ground. What should be the length of the slide?	
13	Length of the shadow of a 15 meter high pole is $5\sqrt{3}$ meters at 7 o'clock in the morning. Then, what is the angle of elevation of the Sun rays with the ground at the time?	
14	You want to erect a pole of height 10 m with the support of three ropes. Each rope has to make an angle 30° with the pole. What should be the length of the rope?	
K CDE	ENIVASA RAJU 9441637668 ZPHS N.R .PA	ILLI PAGE 92

15	Suppose you are shooting an arrow from the top of a building at an height of 6 m to a target on the ground at an angle of depression of 60°. What is the distance between you and the object?	
16	An electrician wants to repair an electric connection on a pole of height 9 m. He needs to reach 1.8 m below the top of the pole to do repair work. What should be the length of the ladder which he should use, when he climbs it at an angle of 60° with the ground? What will be the distance between foot of the ladder and foot of the pole?	
17	A boat has to cross a river. It crosses the river by making an angle of 60° with the bank of the river due to the stream of the river and travels a distance of 600m to reach the another side of the river. What is the width of the river?	
18	An observer of height 1.8 m is13.2 m away from a palm tree. The angle of elevation of the top of the tree from his eyes is 45°. What is the height of the palm tree?	
19	A TV tower stands vertically on the side of a road. From a point on the other side directly opposite to the tower, the angle of elevation of the top of tower is 60°. From another point 10 m away from this point, on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the road	
20	A 1.5 m tall boy is looking at the top of a temple which is 30 meter in height. The angle of elevation from his eye to the top of the crown of the temple increases from 30° to 60° as he walks towards the temple. Find the distance he walked towards the temple.	
21	A statue stands on the top of a 2m tall pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the top of the pedestal is 45°. Find the height of the statue.	
22	From the top of a building, the angle of elevation of the top of a cell tower is 60° and the angle of depression to its foot is 45°. If distance of the building from the tower is 7m, then find the height of the tower	
K CDEE	-NIVASA RAIII 9441637668 7PHS N.R. PA	AIII PAGE 93

23	A wire of length 18 m had been tied with electric pole at an angle of elevation 30° with the ground. Because it was covering a long distance, it was cut and tied at an angle of elevation 60° with the ground. How much length of the wire was cut?	
24	The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60° . If the tower is 30 m high, find the height of the building.	
25	Two poles of equal heights are standing opposite to each other on either side of the road, which is 120 feet wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.	
26	The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m, from the base of the tower and in the same straight line with it are complementary. Prove the height of the tower is 6 m.	
27	The angle of elevation of a jet plane from a point A on the ground is 60° . After a flight of 15 seconds, the angle of elevation changes to 30° . If the jet plane is flying at a constant height of 1500 3 meter, find the speed of the jet plane. ($\sqrt{3}$ =1.732)	
28	A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° .	
29	As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships	
30	A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.	
K CDEE	-NIVΔSΔ RΔIII 9441637668 7PHS N.R. PA	1111 PAGE 94

PROBABILITY

Probability theory is nothing but common sense reduced to calculation.

$$P(E) + P(\overline{E}) = 1$$

SINGLE COIN	Total Possible Out comes/ SAMPLE SPACE { H,T}	Number of total Possible out comes 2
TWO COINS	{HH,TH,HT,TT}	2 ² = 4
THREE COINS	{ HHH,HHT,HTH,THH, TTT,TTH,THT,HTT}	2 ³ = 8
SINGLE DIE	{1,2,3,4,5,6}	6
TWO DIES	White Die 1 2 3 4 5 6 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) Red 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) Die 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)	6 ² = 36
3 2 4 1 5 6 7	{1,2,3,4,5,6,7,8}	8
	{ 1 YELLOW, 2 GREEN,3 BLUE, 4 RED}	10

Find the probability of each event when a COIN is roll once Total Number of Probability = Number of **Favourable** total Number of favourable outcomes **Event Possible** favourable possible Out come(s) outcome(s) outcomes outcomes Number of total possible outcomes **PROBABILITY OF HEAD PROBABILITY OFTAIL PROBABILITY** OF NOT HEAD **PROBABILITY OF NOT TAIL** Find the probability of each event when two COINS is roll once **PROBABILITY** OF 3 HEADS **PROBABILITY** OF 3 TAILS **PROBABILITY** OF AT LEAST **ONE HEAD PROBABILITY** OF AT LEAST **TWO HEADS PROBABILITY** OF AT LEAST **ONE TAIL PROBABILITY** OF AT LEAST **TWO TAIL A NUMBER** LYING BETWEEN 2 AND 6 **A NUMBER** LYING BETWEEN 3 AND 6 **A NUMBER** LYING BETWEEN **4 AND 6 A NUMBER** LYING BETWEEN 2 AND 6 AND **INCLUDIND 2** AND 6 **A NUMBER** LYING BETWEEN 1 AND 4 AND **INCLUDIND 1** AND 4 **K.SREENIVASA RAJU** 9441637668 ZPHS N.R.PALLI PAGE 96

SINGLE DIE

K.SREENIVASA RAJU

9441637668

Find the probability of each when ONE dice are rolled.

SAMPLE SPACE {1,2,3,4,5,6}

Event	Total Possible	Number of total possible	Favourable Out come(s)	Number of favourable outcome(s)	Probability = Number of favourable outcomes
	outcomes	outcomes		outoomo(o)	Number of total possible outcomes
Getting a even					
number					
on the top face					
Getting a odd					
number					
on the top face					
Getting a prime					
number					
on the top face					
Getting a					
composite					
number on the					
top face		ļl		1	
Getting a even					
prime number on					
the top face		<u> </u>			
Getting a more					
than 6 number					
on the top face					
Getting a less					
than 6 number					
on the top face					
Getting a less					
than or equal 6					
number on the					
top face					
Getting a					
5number					
on the top face					
Getting a number					
more					
than 3 on the top					
face					
Getting a less					
than or equal 4					
on the top face					
A number less		†		1	
than 5 on the top					
face					
A number that is		+		1	
factor of 6 on					
the top face		 		1	
A number					
more than 7on					
the top face					
A number					
Multiple of 3 on					
the top face					
Getting a number		Ι Π			
4 or					
less than 4 on					
the top face					
				•	
L CDEENWAGA DAU		C27CC0	ZDIIC NID DALLI		2405 07

ZPHS N.R.PALLI

PAGE 97

SINGLE DIE

Find the probability of each when ONE dice are rolled.

SAMPLE SPACE {1,2,3,4,5,6}

1	P(1)		1	P(>1)		1	P(<2)		1	P(≥1)	1		P(≤2)
2	P(2)		2	P(>2)		2	P(<3)		2	P(≥2)	2		P(≤3)
3	P(3)		3	P(>3)		3	P(<4)		3	P(≥3)	3		P(≤4)
4	P(4)		4	P(>4)		4	P(<5)		4	P(≥4)	4		P(≤ 5)
5	P(5)		5	P(>5)		5	P(<6)		5	P(≥5)	5		P(≤6)
6			6			6			6	+	6		
0	P(6)		0	P(>6)		0	P(<7)		0	P (≥6)		, ,	P(≤7)
1	1 P(EVEN)						1	P(1 M	ULT	TIPLES)			
2	P(ODD))					2	P(2 M	ULT	TIPLES)			
3	P(PRII	ME)					3	P(3 M	ULT	TIPLES)			
4	P(COMPOSITE)						4	P(4 M	ULT	TIPLES)			
5	P(EVEN PRIME)						5	P(5 M					
6	P(EVEN COMPOSITE)					6	P(6MU	ULT	IPLES)				
7	P(ODD COMPOSITE)						7	P(1 FACTORS)					
8	P(ODD PRIME)					8	P(2 FA						
9	P(NOT	EVE	N)				9	P(3 FACTORS)					
10	P(NOT	ODD)				10	P(4 FACTORS)					
11	P(NOT	PRIN	AE)				11	P(5 FACTORS)					
12	P(NOT	COM	IPOSI'	TE)			12	P(6 FACTORS)					
13	P(NOT	EVE	N PRI	ME)			13	P(2 PF	RIM	E FACTOR	(S)		
14	P(NOT	EVE	N CON	MPOSITE	()		14	P(3 PI	RIM	E FACTOR	S)		
15	P(NOT	ODD	COM	IPOSITE))		15	P(4 PI	RIM	E FACTOR	S)		
16	P(NOT	ODD	PRIN	ME)			16	P(5 PI	RIM	E FACTOR	S)		
17	P(NOT	1 MU	LTIP	LES)			17	P(6 PRIME FACTORS)					
18	P(NO	Г 2 М	ULTIP	PLES)			18	P(NO	Г 3 І	FACTORS)			
19	P(NOT	3 MU	LTIP	LES)			19	P(NOT 4 FACTORS)					
20	P(NO	Γ 4 MU	ULTIP	PLES)			20	P(NO	Г 5 І	FACTORS)			

Find the probability of each sum when TWO dice are rolled

			White Die							
		1	2	3	4	5	6			
	1	(1,1)	(2, <mark>1</mark>)	(3,1)	(4, 1)	(5,1)	(6, 1)			
Red	2	(1, <mark>2</mark>)	(2, <mark>2</mark>)	(3, <mark>2</mark>)	(4, <mark>2</mark>)	(5, <mark>2</mark>)	(6, <mark>2</mark>)			
Die	3	(1,3)	(2, <mark>3</mark>)	(3,3)	(4, 3)	(5, <mark>3</mark>)	(6, <mark>3</mark>)			
	4	(1, <mark>4</mark>)	(2, <mark>4</mark>)	(3, <mark>4</mark>)	(4, <mark>4</mark>)	(5, <mark>4</mark>)	(6, <mark>4</mark>)			
	5	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)			
	6	(1,6)	(2,6)	(3,6)	(4, 6)	(5, 6)	(6, 6)			

Event Possible total possible Out come(s) Number of favourable automated Number of favourable outcome(s)		Total	Number of		Number of	Probability =
Sum of appearing on the top of the dice is 8 Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12	Event	Possible	total possible	Favourable Out come(s)		Number of favourable outcomes
on the top of the dice is 8 Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 6 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 Sum on 2 dice is 12		outcomes	outcomes	out como(c)	outcome(s)	Number of total possible outcomes
dice is 8 Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 Sum on 2 dice is 13 Sum on 2 dice is 14 Sum on 2 dice is 15 Sum on 2 dice						
Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is 13 Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 Sum on 2 dice is 12						
on the top of the dice is 13 Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 12 Sum on 2 dice is 12 Sum on 2 dice is 12						
dice is 13 Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12						
Sum of appearing on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at						
on the top of the dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at						
dice is less than equal to 12 Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	on the top of the					
Sum on 2 dice is 2 Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at						
Sum on 2 dice is 3 Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at						
Sum on 2 dice is 4 Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 2					
Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 3					
Sum on 2 dice is 5 Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 4					
Sum on 2 dice is 6 Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sulli on 2 dice is 4					
Sum on 2 dice is 7 Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 5					
Sum on 2 dice is 8 Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 6					
Sum on 2 dice is 9 Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 7					
Sum on 2 dice is 10 Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 8					
Sum on 2 dice is 11 Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 9					
Sum on 2 dice is 12 5 will not come up either time 5 will come up at	Sum on 2 dice is 10					
5 will not come up either time 5 will come up at	Sum on 2 dice is 11					
5 will come up at	Sum on 2 dice is 12					
K.SREENIVASA RAJU 9441637668 ZPHS N.R .PALLI PAGE	K.SREENIVASA RAJU	94416	37668	ZPHS N.R .PALLI		PAGE 99

Find the probability of each sum when TWO dice are rolled

			White Die							
		1	2	3	4	5	6			
	1	(1, <mark>1</mark>)	(2, <mark>1</mark>)	(3, <mark>1</mark>)	(4, <mark>1</mark>)	(5, 1)	(6, <mark>1</mark>)			
Red	2	(1, <mark>2</mark>)	(2, <mark>2</mark>)	(3, <mark>2</mark>)	(4, <mark>2</mark>)	(5, <mark>2</mark>)	(6, <mark>2</mark>)			
Die	3	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6, <mark>3</mark>)			
	4	(1, <mark>4</mark>)	(2, <mark>4</mark>)	(3, <mark>4</mark>)	(4, <mark>4</mark>)	(5, <mark>4</mark>)	(6, <mark>4</mark>)			
	5	(1, 5)	(2,5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)			
	6	(1, 6)	(2, 6)	(3, 6)	(4, 6)	(5, 6)	(6, <mark>6</mark>)			

1	P(1)	1	P(>1)	1	P(<2)	1	P(≥2)	1	P(≤2)	
2	P(2)	2	P(>2)	2	P(<3)	2	P(≥3)	2	P(≤3)	
3	P(3)	3	P(>3)	3	P(<4)	3	P(≥4)	3	P(≤4)	
4	P(4)	4	P(>4)	4	P(<5)	4	P(≥5)	4	P(≤5)	
5	P(5)	5	P(>5)	5	P(<6)	5	P(≥6)	5	P(≤6)	
6	P(6)	6	P(>6)	6	P(<7)	6	P(≥7)	6	P (≤7)	
7	P(7)	7	P(>7)	7	P(<8)	7	P(≥8)	7	P(≤8)	
8	P(8)	8	P(>8)	8	P(<9)	8	P(≥9)	8	P(≤9)	
9	P(9)	9	P(>9)	9	P(<10)	9	P(≥10)	9	P(≤10)	
10	P(10)	10	P(>10)	10	P(<11)	10	P(≥11)	10	P(≤11)	
11	P(11)	11	P(>11)	11	P(<12)	11	P(≥12)	11	P(≤12)	
12	P(12)	12	P(>12)	12	P(<13)	12	P(≥13)	12	P(≤13)	
	- (1-)		1 (F 12)		1 (110)		(_10)		1 (_10)	

P(BOTH EVEN)	P(4 WILL NOT COME UP EITHER TIME)
P(BOTH ODD)	P(4 WILL COME UP AT LEAST ONCE)
P(BOTH PRIME)	P(PRIME,COMPOSITE)
P(BOTH COMPOSITE)	P(COMPOSITE , PRIME)
P(BOTH EITHER EVEN OR PRIME)	P(ODD, EVEN)
P(BOTH NEITHER EVEN NOR PRIME)	P(EVEN, ODD)
P(5 WILL NOT COME UP EITHER TIME)	P(NEITHER PRIME NOR COMPOSITE)
P(5 WILL COME UP AT LEAST ONCE)	P(PRIME,EVEN)
P(SAME NO COME UP EITHER TIME)	P(EVEN ,PRIME)
P(SAME NO NOT COME UP EITHER TIME)	

DECK OF CARDS

Suit	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs	*	2 + + 1	* + + ;	** * * *;	** * * * *;	\$4 4 4 4 4 4;	24.4 4.4 4.4;	*** *** ***;	**** **** * ***	**** ****	1	9 <u>4</u> 8	F 2
Diamonds	•	² ♦	* *	:+ + + +;	20 0 0 0 02	! ♦ ♦ • • •;	1 • • • • • • • • • • • • • • • • • • •	***** *****	2 · · · · · · · · · · · · · · · · · · ·	io de la companya de	Į <u></u>	P 2 6	F G
Hearts	•	₹ ₩	3 *	# ¥ ¥	₹₩ ₩ ₩ ₩ ₩;	\$\to \to\$	7 V V V A A 2	Įų v V AAA;	**************************************	10 V V V V V V V V V V V V V V V V V V V	, <u>2</u> ,	2	Ē,
Spades	÷	₹ ♠	* •	** *	? *	÷ +	I ◆ ◆ ◆	**** ***	20 0 200	****	1 2	2 2	E D

DECK OF CARDS

The standard 52-card deck of French playing cards (54 counting jokers) is the most common deck of playing cards used today. It includes thirteen ranks in each of the four French suits:

clubs (♣), diamonds (♦), hearts (♥) and spades (♠)

Face cards or court cards - jacks, queens, and kings are called "face cards".

"2" cards are also known as deuces. "3" cards are also known as treys

Deck of Cards Ouestions - There are 52 cards in a standard deck of cards -

There are 4 of each card (4 Aces, 4 Kings, 4 Queens, etc.) –

There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are

13 cards in each suit (Clubs/Spades are black, Hearts/Diamonds are red) –

Without replacement means the card IS NOT put back into the deck.

With replacement means the card IS put back into the deck.

Clubs/Spades are black Hearts/Diamonds are red

clubs (♣) ,spades (♠) Diamonds (♦), hearts (♥)

DECK OF CARDS Find the probability of each event

_	Total	No of total	Favourable	No of	Probability =
Event	Possible outcomes	possible outcomes	Out come(s)	favourable outcome(s)	Number of favourable outcomes Number of total possible outcomes
PROBABILITY OF AN ACE	Outcomes	outoocc	Come(s)		Number of total possible outcomes
CARD PROBABILITY OF NOT BE					
AN ACE CARD					
PROBABILITY OF QUEEN CARD					
PROBABILITY OF FACE CARD					
PROBABILITY OF SPADE					
PROBABILITY OF FACE					
CARD SPADES PROBABILITY OF NOT					
FACE CARD					
PROBABILITY OF NOT FACE CARD SPADES					
PROBABILITY OF A KING OF RED COLOUR					
PROBABILITY OF A RED					
FACE CARD PROBABILITY OF THE					
JACK OF HEARTS					
PROBABILITY OF THE QUEEN OF DIAMONDS					
PROBABILITY OF HEARTS					
PROBABILITY OF THE					
QUEEN OF CLUBS PROBABILITY OF THE					
KING OF CLUBS PROBABILITY OF AN					
ALPHABET CARD					
PROBABILITY OF NOT AN ALPHABET CARD					
PROBABILITY OF NUMERICAL CARD					
PROBABILITY OF NOT NUMERICAL CARD					
PROBABILITY OF EVEN NUMBER CARD					
PROBABILITY OF ODD NUMBER CARD					
PROBABILITY OF PRIME NUMBER CARD					
PROBABILITY OF COMPOSITE NUMBER CARD					
PROBABILITY OF 2 MULTIPLE CARD					
PROBABILITY OF NOT 2 MULTIPLE CARD					
PROBABILITY OF 8 FACTORS CARD					
PROBABILITY OF NOT 8 FACTORS CARD					
PROBABILITY OF NOT KING CARDS					
PROBABILITY OF WHITE CARD					
PROBABILITY OF 1 CARD					

DECK OF CARDS

P(Black cards)	P (Red cards)	P (Clubs King)
P (Black king)	P(Red king)	P (Clubs queen)
P (Black queen)	P (Red queen)	P (Clubs ace)
P (Black ace)	P (Red ace)	P (Clubs jack)
P (Black jack)	P (Red jack)	P (Clubs 10)
P (Black 10)	P (Red 10)	P (Clubs 9)
P (Black 9)	P (Red 9)	P (Clubs 8)
P (Black 8)	P (Red 8)	P (Clubs 7)
P (Black 7)	P (Red 7)	P (Clubs 6)
P (Black 6)	P (Red 6)	P (Clubs 5)
P (Black 5)	P (Red 5)	P (Clubs 4)
P (Black 4)	P (Red 4)	P (Clubs 3)
P (Black 3)	P (Red 3)	P (Clubs 2)
P (Black 2)	P (Red 2)	P (not Black cards)
P (Black face cards)	P (Red face cards)	P (not Red cards)
P(spade king)	P(Red king)	P(Red king)
P (spade queen)	P (Hearts queen)	P (Diamonds queen)
P (spade ace)	P (Hearts ace)	P (Diamonds ace)
P (spade jack)	P (Hearts jack)	P (Diamonds jack)
P (spade 10)	P (Hearts 10)	P (Diamonds 10)
P (spade 9)	P (Hearts 9)	P (Diamonds 9)
P (spade 8)	(Hearts 8)	P (Diamonds 8)
P (spade 7)	P (Hearts 7)	P (Diamonds 7)
P (spade 6)	P (Hearts 6)	P (Diamonds 6)
(spade 5)	P (Hearts 5)	P (Diamonds 5)
P (spade 4)	P (Hearts 4)	P (Diamonds 4)
P (spade 3)	P (Hearts 3)	P (Diamonds 3)
P (spade 2)	P (Hearts 2)	P (Diamonds 2)

P (not Black cards)	P (not Red cards)	P (not Club king)
P (not Black king)	P (not g)	P (not Club queen)
P (not Black queen)	P (not Red queen)	P (not Club ace)
P (not Black ace)	P (not ace)	P (not Club jack)
P (not Black jack)	P (not Red jack)	P (not Club 10)
P (not Black 10)	P (not <i>Red</i> 10)	P (not Club 9)
P (not Black 9)	P (not Red 9)	P (not Club 8)

P (not Black 8)	P (not Red 8)	P (not Club 7)
P (not Black 7)	P (not Red 7)	P (not Club 6)
(not Black 6)	P (not Red 6)	P (not Club 5)
P (not Black 5)	P (not Red 5)	P (not Clubs 4)
P (not Black 4)	P (not Red 4)	P (not Club 3)
P (not Black 3)	P (not Red 3)	P (not Club 2)
P (not Black 2)	P (not Red 2)	P (not Black cards)
P (not Black face card)	P (not Red face cards)	P (not Red cards)
P(spade king)	P (not g)	P (not king)
P (not spadqueen)	P (not Hearts queen)	P (not Diamonds queen)
P (not spade ace)	P (not Hearts ace)	P (not Diamond ace)
P (not spade jack)	P (not Hearts jack)	P (not Diamond jack)
P (not spade 10)	P(not Heart 10)	P(not Diamond 10)
P(not spade 9)	P(not Heart 9)	P(not Diamond 9)
P(not spade 8)	P(not Hearts 8)	P(not Diamond 8)
P(not spade 7)	P(not Heart 7)	P(not Diamond 7)
P(not spade 6)	P(not Hearts 6)	P(not Diamond 6)
P(not spade 5)	P(not Heart 5)	P(not Diamond 5)
P(not spade 4)	P(not Heart 4)	P(not Diamond 4)
P(not spade 3)	P(not Hearts 3)	P(not Diamond 3)
P(spade 2)	P(not Heart 2)	P(not Diamond 2)

There are 12 red balls, 18 blue balls and 6 white balls in a box. When a ball is drawn at random from the box, what is the probability of

			•		
P(Event)	Total Possible outcomes	No of total possible outcomes	Favourable Out come(s)	No of favourable outcome(s)	Probability = Number of favourable outcomes Number of total possible outcomes
P(red ball)					
P(blue ball)					
P(white ball)					
P(not getting a red ball)					
P(not getting a blue ball)					
P(not getting a white ball)					
P(Black ball)					
P(not getting a black ball)					
What is	s the probability of	a number	picked from fir	st 20 natura	I numbers
P(even number)					
P(Not even number)					
P(composite number)					
P(Not composite number)					
P(Prime number)					
P(Not Prime number)					
P(Odd number)					
P(Not Odd number)					
K.SREENIVASA RAJU	9441637668	ZPHS	N.R .PALLI		PAGE 104

What is the	What is the probability of a number picked from first 90 natural numbers							
P(even number)			<u> </u>					
P(Not even number)								
P(composite number)								
P(Not composite number)								
P(Prime number)								
P(Not Prime number)			1 1					
P(Odd number)								
P(Not Odd number)								
P(5 MULTIPLES)								
P(Not 5 MULTIPLES)								
P(3 MULTIPLES)								
P(Not 3 MULTIPLES)								
P(4 MULTIPLES)								
P(Not 4 MULTIPLES)								
P(6 MULTIPLES)								
P(Not 6 MULTIPLES)								
P(7 MULTIPLES)								
P(Not 7 MULTIPLES)								
P(8 MULTIPLES)								
P(Not 8 MULTIPLES)								
P(9 MULTIPLES)								
P(Not 9 MULTIPLES)			1					
P(10 MULTIPLES)			+					
P(Not 10 MULTIPLES)			+					
P(Perfect squares)			+					
P(Not Perfect squares)			+					
		SPII	NNER					
4 1		Possible SAMPLE S	Out comes SPACE		Number of total ossible out comes			
5 8								

P(Event)	Total Possible outcomes	No of total possible outcomes	Favourable Out come(s)	No of favourable outcome(s)	Probability = Number of favourable outcomes Number of total possible outcomes
P(even number)					
P(Not even number)					
P(composite number)					
P(Not composite number)					
P(Prime number)					
P(Not Prime number)					
P(Odd number)					
P(Not Odd number)					
K.SREENIVASA RAJU	9441637668	ZPHS	N.R.PALLI		PAGE 105

K.SREENIVASA RAJU

P(3 MULTIPLES)			
F(3 MOLTIFEE3)			
P(Not 3 MULTIPLES)			
P(NOL 3 MOLTIPLES)			
D/4 MUU TIDI EO\			
P(4 MULTIPLES)			
P(Not 4 MULTIPLES)			
P(3 FACTORS)			
1 (017/010/10)			
P(Not 3 FACTORS)			
I (NOCOTACTORIO)			
P(4 FACTORS)			
F(4 FACIONS)			
D/M-1 4 EACTORO)			
P(Not 4 FACTORS)			
, ,			
P(5 FACTORS)			
1 (0 1110 1 0110)			
P(Not 5 FACTORS)			
1 (1101 0 1 710 1 0 110)			
P(6 FACTORS)			
r (o i Ac i Oilo)			
P(Not 6 FACTORS)			
P(NOL OT ACTORS)			
D/Z EACTODO\			
P(7 FACTORS)			
DAL - TEACTORS			
P(Not 7 FACTORS)			
·			
P(8 FACTORS)			
(/			
	+		
P(Not 8 FACTORS)			
. (,			
P(Perfect squares)		1	
i (i cricot squares)			
P(Not Perfect squares)			
r (NOL FELIEUL SYUALES)		1	
l		1	
D/ Doutoot CUDEC \	+		
P(Perfect CUBES)		1	
DAL LB (LOUDES	+	1	
P(Not Perfect CUBES)			
· '		1	
		1	

P (E	\overline{E}) + P(\overline{E}):	= 1	$P(\overline{E}) =$	1 - P (E)		$P(E) = 1 - P(\overline{E})$			
P (E)	$P(\overline{E})$	1	P (E)	$P(\overline{E})$	1	P (E)	$P(\overline{E})$	1	
0.1		1		0.11	1			1	
0.5		1		0.51	1			1	
0.9		1		0.91	1			1	
0.25		1		0.251	1			1	
0.11		1		0.111	1			1	
0.76		1		0.761	1			1	
0.62		1		0.621	1			1	
0.38		1		0.138	1			1	
0.55		1		0.515	1			1	
0.95		1		0.915	1			1	
0.99		1		0.919	1			1	
0.975		1		0.97	1			1	
0.9215		1		0.915	1			1	

	STATISTICS									
		Limits Bounds								
		C.I				1				
S.No	Class interval	TYPE	Limit	Limit	Bound	Bound	Mid Value	length of the Class Inte	rval	
1	02									
2	24									
3	46									
4	68									
5	810									
6	1012									
7	200250									
8	250300									
9	300350									
10	350400									
11	400450									
12	1113									
13	1315									
14	1517									
15	1719									
16	1921									
17	2123									
18	6568									
19	6871									
20	7174									
21	7477									
22	7780									
23	8083									
24	1014									
25	1519									
26	2024									
27	2529									
28	3034									
29	100150									
30	150200									
31	200250									
32	250300									
33	300350									
34	0.00-0.04									
35	0.040.08	_								
36	0.080.12	_								
37	0.120.16	_								
38	0.160.20									
39	0.200.24									
40	3538	_								
41	3841	_								
42	4144	_								
43	4447	_								
44	4750	_								
45	5053	_								
K.SRE	ENIVASA RAJU	1	94416	37668	ZPHS	N.R .PALLI		PAGE	107	

```
1. Arithmetic mean of 26,24,10,32,6,8,6 is----
2. If the Arithmetic mean of 3,4,5,7,10,x is 5 then=-----
3. Arithmetic mean of 24,40,41,42,24 scores is ----
4. If the Arithmetic mean of 8,6,4,0,6,3,x is 4 then x = -----
5. If the A.M of 1,5,9,7,13 is x then x=----
6. Mean of 9,11,13,p,18,19 is p then p=----
7. Mean of 2/5,5/3,1/3,5/6,1/6 is----
8. A.M of k+2,k,k-2 is ----
9. A.M of a + d, a, a-d is -----
10.A.M of a+3d,a+2d,a+d,a,a-d,a-2de,a-3d is ----
11. Find the Mean of 7,6,5,9,8,0,7 ----
12. Find the Mean of 1/3,3/4,5/6,1/2,7/12 is ----
13. The A.M of 1,2,3,4,5,6,7,8,9,10 is----
14. Median of 47,52,57,62,67,72,77,78 is ----
15. The Median of 136,130,125,130,135,120,124,127 is----
16. Median of 10,20,30,15,35,42 is -----
17. Median of scores 17,31,12,27,15,19,23 is----
18. Median of 3/4,1/2,2/3,1/6,7/12 is----
19. Median of 12,11,15,11,12,15,12,9,12 is ---
20. Median of observation 17,31,12,27,15,19,23 ----
21. Median 6,49,14,46,16,42,26,32,28,----
22. Median of 3,18,6,16,12,10,----
23. Median of 19,1,3,17,6,12,11,8 ----
24. Median of 1.8,4.0,2.7,1.2,4.5,2.3,3.7,3.1 ----
25. Median of 10,20,15,29,35,42 is ----
26. Find the Median of 15.666,15.03,15,15.333.15.3
27. Find the Median of -3,-5,-8,0,3,2,-10 ----
28. Mode of 1,2,3,2,4,5,2,6,2 is ----
29. Mode of 10,11,14,12,14,9,12,14,11,14 is ----
30. Mode of 23,20,23,16,27,23 is -----
31. Mode of 12,11,15,11,12,15,12,9,12 is ----
32. Empirical relation among A.M., Median and Mode is -----
33. If A.M = 39, Median = 37.5, then Mode =----
34.If A.M =53.8, Median =53.5, then Mode =----
35. For some quantities Mode = 29, A.M = 32 Then Median is ----
36.If A.M =72.5, Median =73.9, then Mode =----
37. Mode of 1,2,3,4,5,6,7,8,9,10 is ----
38. Mode of 100 Natural numbers is -----
39. The observation which occurs most frequently in a data is called --
40. Range of first 100 natural numbers is -----
41. Mid value of class 1-10 is -----
42. Class interval of the class 1-10 is ----
                                             Mid value of class 20-30 is ----
43. Mid value of class 20-29 is -----
44. Range -----
                                                 Father of statistics is -----
45. The A.M of 67,79,15,0,93,44,17 is----
46. The A.M of 30,20,32,16,27is ----
47. The mid-value of the class 10-19 is ----
48. The mid-value of the class is used to calculate ----
49. The mode of 32,20,32,26,27,32 is -----
50. The arithmetic mean of first "n" natural numbers is ---
51. The Mode in the data is 12,11,15,12,11,15,12,9,12 is ----
52. For some quantities Median = 38, A.M = 39 Then Mode is ----
53. Data with one mode is called -----
```

Find the Arithmetic Mean with Direct Method

Class interval	1025	2540	4055	5570	7085	85100
Number of student (fi)	2	3	7	6	6	6

Class interval C.I	Number of student f_i	Class Marks xi	f_i . \mathbf{xi}
1025	2	17.5	35.0
2540	3	32.5	97.5
4055	7	47.5	332.5
5570	6	62.5	375.0
7085	6	77.5	465.0
85100	6	92.5	555.0
Total	$\sum f_i =$		$\sum f_i$ xi = 1860.0
	30		

Arithmetic Mean =
$$\mathbf{X} = \frac{\sum f_i \mathbf{x} i}{\sum f_i}$$

$$=\frac{1860}{30}$$

Arithmetic Mean = 62

Deviation Method [or]

Assumed Mean Method.

Class interval	Number of student	Class Marks	$\mathbf{d}\mathbf{i} = \mathbf{x}\mathbf{i} - \mathbf{a}$	f_i . \mathbf{di}
C.I	f_{i}	Xi		
1025	2	17.5	-30	-60
2540	3	32.5	-15	-45
4055	7	47.5 [a]	0	0
5570	6	62.5	15	90
7085	6	77.5	30	180
85100	6	92.5	45	270
	$\sum f_i = 30$			$\sum f_i \cdot \mathbf{di} = 435$

Arithmetic Mean (

Deviation Method [or] Assumed Mean Method)

$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, \mathbf{d}i}{\sum f_i}$$

Assumed Mean = a = 47.5

$$\Sigma$$
 fi. di = 435, Σ fi = Arithmetic Mean

$$= X = 47.5 + \frac{435}{30} = 47.5 + 145 = 62.0.$$

Step- deviation method

Class interval	Number of student	Class Marks	di = xi - a	$u_i = \frac{x_i - a}{1}$	f_i . u_i
C.I	f_{i}	Xi		h	
1025	2	17.5	-30	-2	-4
2540	3	32.5	-15	-1	-3
4055	7	47.5 [a]	0	0	0
5570	6	62.5	15	1	6
7085	6	77.5	30	2	12
85100	6	92.5	45	3	18
	$\sum f_i = 30$				$\sum f_i \cdot \mathcal{U}_i = 29$

Step- deviation method
$$= \frac{\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$

$$a$$
 is the assumed mean = 47.5,

$$\sum f_i \cdot \mathcal{U}_i = 29, \sum f_i = 30$$

$$-\sum f_i \mathcal{U}_i = 29$$

$$= \bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h = 47.5 + \frac{29}{30} \times 15$$

Class interval C.I	Number of student f_i	Class Marks Xi	di = xi - a = xi - 50	$u_i = \frac{x_i - a}{h}$	f_i . $oldsymbol{xi}$	f_i . d i	f_i . u_i
1525	6	20	-30	-3	120	-180	-18
2535	11	30	-20	-2	330	-220	-22
3545	7	40	-10	-1	280	-70	-7
4555	4	50 [a]	0	0	200	0	0
5565	4	60	10	1	240	40	4
6575	2	70	20	2	140	40	4
7585	1	80	30	3	80	30	3
	$\sum f_i$ = 35				$\sum f_i$ xi = 1390	$\sum f_i$. di	$\sum f_i \cdot \mathcal{U}_i$ = -36

Direct Method

Arithmetic Mean

$$= \mathbf{X} = \frac{\sum f_i \mathbf{x} \mathbf{i}}{\sum f_i} = \frac{\mathbf{1860}}{\mathbf{30}}$$

Arithmetic Mean

= 62.

Deviation Method [or] Assumed Mean Method.

Arithmetic Mean (Deviation Method [or] Assumed Mean Method)

$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = 47.5 $\sum fi \cdot di = 435$,

$$\Sigma$$
 fi. di = 435

$$\Sigma$$
 fi = 30

Arithmetic Mean
$$X = 47.5 + \frac{435}{30} = 47.5 + 14.5 = 62.0$$

Step- deviation method

Step- deviation method Arithmetic Mean $\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$ mean = 47.5 $\sum f_i$. \mathcal{U}_i = 29, $\sum f_i$ = 30

a is the assumed mean

$$\sum f_i \cdot \mathcal{U}_i = 29$$

$$\sum f_i = 30$$

Step- deviation method Arithmetic Mean

$$= \frac{\overline{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h}{\sum f_i}$$
$$= 47.5 + \frac{29}{30} \times 15$$

K.SREENIVASA RAJU

9441637668

ZPHS N.R.PALLI

PAGE 110

Direct Method

Class interval C.I	Number of student f_i	Class Marks Xi	f_i . $oldsymbol{x}$ i
1025	2		
2540	3		
4055	7		
5570	6		
7085	6		
85100	6		
	$\sum f_i =$		$\sum f_i$ xi =

A.M = Arithmetic Mean

$$= \mathbf{X} = \frac{\sum f_i \mathbf{x} \mathbf{i}}{\sum f_i} =$$

=

Arithmetic Mean =

Number of plants C.I	Number of houses f_i	Class Marks Xi	f_i . $oldsymbol{xi}$
02	1		
24	2		
46	1		
68	5		
810	6		
1012	2		
1214	3		
	$\sum f_i =$		$\sum f_i$ xi =

Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$

=

Arithmetic Mean =

Daily wages in Rupees C.I	Number of workers f_i	Class Marks Xi	f_i . $oldsymbol{x}$ i
200250	12		
250300	14		
300350	8		
350400	6		
400450	10		
	$\sum f_i =$		$\sum f_i$ xi =

Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$

=

Arithmetic Mean =

Daily pocket allowance in Rupees C.I	Number of children f_i	Class Marks Xi	f_i . $oldsymbol{xi}$
1113	7		
1315	6		
1517	9		
1719	13		
1921	20		
2123	5		
2325	4		
	$\sum f_i =$		$\sum f_i$ xi =

Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$

=

Arithmetic Mean =

Number of heart beats/minute C.I	Number of women f_i	Class Marks Xi	f_i . $oldsymbol{xi}$		
6568	2			$\sum f_i$ xi	
6871	4			Arithmetic Mean = $\mathbf{X} = \frac{\sum f_i \times i}{\sum f_i}$	
7174	3			_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
7477	8			-	
7780	7				
8083	4			Arithmetic Mean =	
8386	2			_	
8580			- C .	_	
Number of	$\sum f_i$ =		$\sum f_i$ xi =	<u> </u>	
Number of oranges C.I	baskets f_i	Class Marks Xi	f_i . xi		
1014	15			Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$	
1519	110			Σf_i	
2024	135				
2529	115			=	
3034	25			Arithmetic Mean =	
	$\sum f_i =$		$\sum f_i$ xi =	Artimetic Mean –	
Daily expenditure in Rupees C.I	Number of house holds f_i	Class Marks Xi	f_i . $oldsymbol{x}$ i	Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$	
100150	4			Σf_i	
150200	5			_	
200250	12			=	
250300	2			Arithmetic Mean =	
300350	2				
	$\sum f_i =$		$\sum f_i$ xi =		
Concentration of SO ₂ in ppm	Frequency	Class Marks	f_i . $oldsymbol{xi}$		
C.I	f_i	Xi	,	Arithmetic Mean = $X = \frac{\sum f_i x_i}{2}$	
0.00-0.04	4			Arithmetic Mean = $\mathbf{X} = \frac{1}{\sum_{i} f_{i}}$	
0.040.08	9				
0.080.12	9			=	
0.120.16	2			_	
0.160.20	4			Arithmetic Mean =	
0.200.24	2		- <i>c</i>	_	
	$\sum f_i =$		$\sum f_i$ xi =		
Number of days C.I	Number of students	Class Marks Xi	f_i . $oldsymbol{x}$ i		
	f_i			Σf_i xi	
3538	1			Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$	
3841	3				
4144	4			=	
4447 4750	7			\dashv	
5053	10			Arithmetic Mean =	
5356	11			-	
	$\sum f_i =$		$\sum f_i x_i =$	-	
K SBEENINASA B	l.	 	1	DAGE 113	
K.SREENIVASA RAJU 9441637668 ZPHS N.R .PALLI PAGE 112					

				<u></u>
Literacy rate in	Number of	Class Marks	f	
% C.I	cities	Xi	f_i . $oldsymbol{xi}$	- f
C.I	f_{i}			Arithmetic Mean = $X = \frac{\sum J_i x_i}{\sum J_i x_i}$
4555	3			Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$
5565	10			
6575	11			=
				_
7585	8			Arithmetic Mean =
8595	3			Artifilletic Mean -
	$\sum f_i =$		$\sum f_i$ xi =	
Age (in years) C.I	Number of	Class Marks Vi	f_i . $oldsymbol{xi}$	
	patients f_i	Class Marks Xi	J_i . XI	A with motion $f(x) = \sum_{i=1}^{n} f_i(x)$
				ArithmeticMean = X = $\frac{\sum f_i \times i}{\sum f_i}$
515	6			
1525	11			\dashv
	21			=
2535				A with we att = Nf = ===
3545	23			Arithmetic Mean=
4555	14			
5565	5			
	$\sum f_i =$		$\sum f_i$ xi =	
	$\angle J_i$ -		∠ J _i xi −	
Expenditure C.I	Number of	Class Marks	f_i . $oldsymbol{xi}$	
1	families f_i		J_i . λ i	
10001		Xi		_
1000-1500	24			_
1500-2000	40			_
2000-2500	33			$\sum f_i$ xi
2500-3000	28			Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$
3000-3500	30			ΣJ_i
3500-4000	22			_
4000-4500	16			=
4500-5000	7			_
	$\sum f_i =$		$\sum f_i$ xi =	Arithmetic Mean =
				_
Number of	Number of	Ol M	_	$\sum f_i$ xi
students		Class Marks	f_i . $oldsymbol{xi}$	Arithmetic Mean = $X = \frac{\sum f_i x_i}{\sum f_i}$
C.I	States f_i	Xi		ΣJ_i
1520	3			
2025	8			=
2530	9			_
30-35	10			Arithmetic Mean =
3540	3			
4045	0			
4550	0			
5055	2			
	$\sum f_i =$		$\sum f_i$ xi =	
 	<i>□</i> J1		_ J ₁	
Monthly	Number of	Class Marks	f_i . $oldsymbol{x}$ i	Arithmetic Mean = X =
consumption C.I	consumers f_i	Xi	J i · Ai	$\Sigma \ f_i$ xi
6585	4	711		
	5			Σf_i
85105				\dashv
105125	13			=
125145	20			
145165	14			Arithmetic Mean =
165185	8			
185205	4			
	$\sum f_i =$		$\sum f_i$ xi =	
L CDEENINGS D	L.	 1/1/627669 75	<u> </u>	
K.SREENIVASA R	AJU 94	141637668 ZF	PHS N.R .PALLI	PAGE 113

Number of letters C.I	Number of surnames f_i	Class Marks	f_i . $oldsymbol{xi}$
14	6		
47	30		
710	40		
1013	16		
1316	4		
1619	4		
	$\sum f_i =$		$\sum f_i$ xi =

Arithmetic Mean = X	_	$_{\Sigma}$ f_{i} xi
Al tillilletic Meali – X	_	Σf_i

=

Arithmetic Mean

$$\begin{array}{|c|c|c|c|c|c|} \hline \textbf{Class interval} & \textbf{Number of student} & \textbf{Class Marks} & f_i \cdot \textbf{xi} \\ \hline \textbf{10--25} & \textbf{2} & & & & \\ \hline \textbf{25--40} & \textbf{3} & & & & \\ \hline \textbf{40--55} & \textbf{7} & & & & \\ \hline \textbf{55--70} & \textbf{6} & & & & \\ \hline \textbf{70--85} & \textbf{6} & & & & \\ \hline \textbf{85--100} & \textbf{6} & & & & \\ \hline \textbf{Total} & & & & & & & & \\ \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & & \\ \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & \\ \hline \hline \textbf{\sum} f_i \cdot \textbf{xi} = & \\ \hline \end{tabular}$$

Arithmetic Mean =
$$\mathbf{X} = \frac{\sum f_i \mathbf{x} \mathbf{i}}{\sum f_i}$$

=

Arithmetic Mean =

Class interval C.I	Number of student f_i	Class Marks Xi	f_i . ${f xi}$
1025	2		
2540	7		
4055	9		
5570	7		
7085	6		
85100	9		
Total	$\sum f_i =$		$\sum f_i \mathbf{x} \mathbf{i} =$

Arithmetic Mean =
$$\mathbf{X} = \frac{\sum f_i \mathbf{x} \mathbf{i}}{\sum f_i}$$

=

Arithmetic Mean =

Class interval C.I	Number of student f_i	Class Marks Xi	f_i . ${f xi}$
1025	2		
2540	3		
4055	7		
5570	8		
7085	4		
85100	6		
Total	$\sum f_i =$		$\sum f_i \mathbf{x} \mathbf{i} =$

Arithmetic Mean =
$$\mathbf{X} = \frac{\sum f_i \mathbf{x} \mathbf{i}}{\sum f_i}$$

=

Arithmetic Mean =

DEVIATION METHOD [OR] ASSUMED MEAN METHOD

Class interval C.I	Number of student f_i	Class Marks xi	di = xi - a	f_i . di
1025	2			
2540	3			
4055	7			
5570	6			
7085	6			
85100	6			
	$\sum f_i =$			$\sum f_i$.di =

Class interval C.I	Number of student f_i	Class Marks xi	di = xi - a	f_i . di
1025	2			
2540	3			
4055	7			
5570	6			
7085	6			
85100	6			
	$\sum f_i =$			$\sum f_i.di =$

Number of plants C.I	Number of houses f_i	Class Marks xi	di=xi-a	f_i . di
02	1			
24	2			
46	1			
68	5			
810	6			
1012	2			
1214	3			
	$\sum f_i$ =			$\sum f_i$. di =
al .				

Daily	Number	Class		
wages in Rupees	of workers	Marks	di=xi-a	$f_i^{}$. di
C.I	f_{i}	xi		
200250	12			
250300	14			
300350	8			
350400	6			
400450	10			
	$\sum f_i =$			$\sum f_i$. di =

Class	Number of	Class		
interval C.I	f_i	Marks	di = xi - a	$f_{\scriptscriptstyle i}$. di
	<i>3 t</i>	xi		
1113	7			
1315	6			
1517	9			
1719	13			
1921	20			
2123	5			
2325	4			
	$\sum f_i =$			$\sum f_i$. di =

Arithmetic Mean (Deviation Method [or]

Assumed Mean Method)
$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

Assumed Mean =
$$a = ----$$

$$\Sigma$$
 fi.di = ----- Σ fi = -----

Arithmetic Mean = X= a +
$$\frac{\sum f_i di}{\sum f_i}$$
 =

Arithmetic Mean (Deviation Method [or]

Assumed Mean Method)
$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

Assumed Mean = a = -----

$$\Sigma$$
 fi. di = ---- Σ fi = -----

Arithmetic Mean = X

$$= \mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i} =$$

Arithmetic Mean

(Deviation Method [or] Assumed Mean Method)

$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

Assumed Mean = a = ----

$$\sum fi. di = ---- \sum fi = ---$$

Arithmetic Mean = X =
$$\mathbf{a} + \frac{\sum f_i \, di}{\sum f_i} =$$

Arithmetic Mean (Deviation Method [or]

Assumed Mean Method)
$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

Assumed Mean =
$$a = \cdots$$

$$\Sigma$$
 fi.di = ----- Σ fi = -----

Arithmetic Mean = X= a +
$$\frac{\sum f_i di}{\sum f_i}$$
 =

Number of heart	Number of	Class		
beats/minute	women	Marks	di=xi-a	$f_{\scriptscriptstyle i}$. di
C.I	f_{i}	xi		
6568	2			
6871	4			
7174	3			
7477	8			
7780	7			
8083	4			
8386	2			_
	$\sum f_i$ =			$\sum f_i$. di =

Arithmetic Mean (Deviation Method [or]

Assumed Mean Method)
$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

$$\sum f_i \cdot d_i = ---- \sum f_i = ----$$

Arithmetic Mean = X= a +
$$\frac{\sum f_i di}{\sum f_i}$$
 =

Number of oranges	Number of	Class Marks	di = xi - a	f_i . $oldsymbol{d}$ i
C.I	baskets	l marito	ui = Xi - a	J_i . \mathbf{u}_i
	f_i	Xi		
1014	15			
1519	110			
2024	135			
2529	115			
3034	25			
	$\sum f_i$ =			$\sum f_i$. di =

Arithmetic Mean (Deviation

Method [or] Assumed Mean Method) X =

$$\mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = **a** = -----

$$\sum \mathbf{f} \mathbf{i} \cdot \mathbf{d} \mathbf{i} = ----- \sum \mathbf{f} \mathbf{i} = -----$$

Arithmetic Mean = X= a +
$$\frac{\sum f_i \, di}{\sum f_i}$$
 =

Daily	Number	Class		
expenditure	of house	Marks		c d ·
in Rupees	holds f_i	IVIAINS	di = xi - a	$f_i^{}$. di
C.I		Xi		
100150	4			
150200	5			
200250	12			
250300	2			
300350	2			
	$\sum f_i$ =			$\sum f_i$. di =

Arithmetic Mean (Deviation Method [or] Assumed Mean Method) X =

$$\mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = ------

$$\sum \mathbf{f} \mathbf{i} \cdot \mathbf{d} \mathbf{i} = \cdots \sum \mathbf{f} \mathbf{i} = \cdots$$

Arithmetic Mean = X=
$$a + \frac{\sum f_i di}{\sum f_i}$$
 =

			1	
Concentration	Frequency	Class		
of SO₂ in ppm C.I	f_i	Marks	di = xi - a	$f_{\scriptscriptstyle i}$. d i
		Xi		
0.00-0.04	4			
0.040.08	9			
0.080.12	9			
0.120.16	2			
0.160.20	4			
0.200.24	2			
	$\sum f_i =$			$\sum f_i$. di =

Arithmetic Mean (Deviation

Method [or] Assumed Mean Method) X =

$$\mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = ----

$$\sum \mathbf{f} \mathbf{i} \cdot \mathbf{d} \mathbf{i} = \cdots \sum \mathbf{f} \mathbf{i} = \cdots$$

Arithmetic Mean = X= a +
$$\frac{\sum f_i \, di}{\sum f_i}$$
 =

Number of days	Number of students	Class		
C.I	f_i	Marks	di = xi - a	f_i . di
		Xi		
3538	1			
3841	3			
4144	4			
4447	4			
4750	7			
5053	10			
5356	11			
	$\sum f_i =$			$\sum f_i$. di =

Arithmetic Mean (Deviation

Method [or] Assumed Mean Method) X =

$$\mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = -----

$$\Sigma$$
 fi. di = ----- Σ fi = -----

Arithmetic Mean = X= a +
$$\frac{\sum f_i \, di}{\sum f_i}$$

Arithmetic Mean (Deviation

Method [or] Assumed Mean Method) X =

$$\mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = -----

$$\sum \mathbf{f} \mathbf{i} \cdot \mathbf{d} \mathbf{i} = \cdots \sum \mathbf{f} \mathbf{i} = \cdots$$

Arithmetic Mean = X= a +
$$\frac{\sum f_i di}{\sum f_i}$$

_
_

Literacy rate in % C.I	Number of cities f_i	Class Marks Xi	di = xi - a	f_i . $oldsymbol{d}$ i
4555	3			
5565	10			
6575	11			
7585	8			
8595	3			
	$\sum f_i =$			$\sum f_i$. di =

Age (in years) C.I	Number of patients f_i	Class Marks Xi	di = xi - a	f_i . $oldsymbol{d}$ i
515	6			
1525	11			
2535	21			
3545	23	_	-	
4555	14			
5565	5			
	$\sum f_i =$			$\sum f_i$. di =

Class Marks

Xi

Arithmetic Mean (Deviation Method [or] Assumed Mean Method)

$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = -----

$$\sum \mathbf{f} \mathbf{i} \cdot \mathbf{d} \mathbf{i} = \cdots \sum \mathbf{f} \mathbf{i} = \cdots$$

Arithmetic Mean =

$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, \mathbf{d}i}{\sum f_i}$$

f_i . di

 $\sum f_i$. di =

Arithmetic Mean (Deviation

Method [or] Assumed Mean Method) X

$$= \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

Assumed Mean = a = -----

$$\sum$$
 fi. di = ----- \sum fi = ----
Arithmetic Mean = X

$$= \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

K.SREENIVASA RAJU

Expenditure

C.I

1000-1500

1500-2000

2000-2500

2500-3000

3000-3500

3500-4000

4000-4500

4500-5000

Number

of families

 f_{i}

24

40

33

28

30

22

16

 f_i =

9441637668

ZPHS N.R.PALLI

di = xi - a

PAGE 117

Number of students C.I	Number of States f_i	Class Marks Xi	di = xi - a	f_i . d_i
1520	3			
2025	8			
2530	9			
30-35	10			
3540	3			
4045	0			
4550	0			
5055	2			
	$\sum f_i$ =			$\sum f_i$. di =

Arithmetic Mean (Deviation Method [or] Assumed Mean Method)

$$\mathbf{X} = \mathbf{a} + \frac{\sum f_i \, \mathbf{d}i}{\sum f_i}$$

Assumed Mean = a = ----

$$\Sigma$$
 fi.di = ----- Σ fi = -----

Arithmetic Mean = X

$$= \mathbf{a} + \frac{\sum f_i \, di}{\sum f_i}$$

_

Monthly consumption C.I	Number of consumers f_i	Class Marks Xi	di = xi - a	f_i . d_i
6585	4			
85105	5			
105125	13			
125145	20			
145165	14			
165185	8			
185205	4			
	$\sum f_i =$			$\sum f_i$. di =

Arithmetic Mean (Deviation Method [or] Assumed Mean Method)
X =

a +

$$\frac{\sum f_i \; \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = -----

$$\Sigma$$
 fi.di = Σ fi =

Arithmetic Mean = X= a +
$$\frac{\sum f_i di}{\sum f_i}$$
 =

Number of letters C.I	Number of surnames f_i	Class Marks Xi	di = xi - a	f_i . $oldsymbol{d}$ i
14	6			
47	30			
710	40			
1013	16			
1316	4			
1619	4			
	$\sum f_i =$			$\sum f_i$. di =

Arithmetic Mean (Deviation Method [or] Assumed Mean Method) X =

$$\mathbf{a} + \frac{\sum f_i \, \mathbf{di}}{\sum f_i}$$

Assumed Mean = a = ----

$$\Sigma$$
 fi.di = ---- Σ fi =

Arithmetic Mean = X= a +
$$\frac{\sum f_i di}{\sum f_i}$$
 =

K.SREENIVASA RAJU

9441637668

ZPHS N.R.PALLI

Step-deviation method

Class interval	1025	2540	4055	5570	7085	85100
Number of student	2	3	7	6	6	6

Class interval C.I	$\begin{array}{c} \textbf{Number of} \\ \textbf{student} & f_i \end{array}$	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . $\boldsymbol{\mathcal{U}}_i$
1025	2	17.5	-30	-2	-4
2540	3	32.5	-15	-1	-3
4055	7	47.5 [a]	0	0	0
5570	6	62.5	15	1	6
7085	6	77.5	30	2	12
85100	6	92.5	45	3	18
	$\sum f_i = 30$				$\sum f_i \cdot \mathcal{U}_i = 29$

a = 47.5 , h = Length of the class interval =15 ,
$$\sum$$
 f_i = 30, $\sum f_i$. \mathcal{U}_i = 29

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h = 47.5 + \frac{29}{30} \times 15$$
 = 47.5 + 14.5 = 62

Number of plants C.I	$\begin{array}{c} \textbf{Number of} \\ \textbf{houses} \\ f_i \end{array}$	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
02	1				
24	2				
46	1				
68	5				
810	6				
1012	2				
1214	3				
	$\sum f_i =$				$\sum f_i \cdot u_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Daily wages in Rupees C.I	Number of workers f_i	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
200250	12				
250300	14				
300350	8				
350400	6				
400450	10				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i = ,

Arithmetic Mean =
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Class interval C.I	$\begin{array}{cc} \text{Number of} \\ \text{student} & f_i \end{array}$	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
1113	7				
1315	6				
1517	9				
1719	13				
1921	20				
2123	5				
2325	4				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean =
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Number of heart beats/minute C.I	$\begin{array}{c} \text{Number of} \\ \text{women} \ f_i \end{array}$	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . U_i
6568	2				
6871	4				
7174	3				
7477	8				
7780	7				
8083	4				
8386	2				
	$\sum f_i =$				$\sum f_i \cdot u_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Number oranges	of C.I	Number of baskets f_i	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
1014		15				
1519		110				
2024		135				
2529		115				
3034		25				
		$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$

Daily expenditure in Rupees C.I	Number of house holds f_i	Class Marks Xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
100150	4				
150200	5				
200250	12				
250300	2				
300350	2				
	$\sum f_i =$				$\sum f_i \cdot u_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean =

Concentration of SO ₂ in ppm C.I	Frequency f_i	Class Marks Xi	di = Xi - a	$u_i = \frac{x_i - a}{h}$	$f_i \cdot u_i$
0.00-0.04	4				
0.040.08	9				
0.080.12	9				
0.120.16	2				
0.160.20	4				
0.200.24	2				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean =

Number of days C.I	Number of students f_i	Class Marks Xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
3538	1				
3841	3				
4144	4				
4447	4				
4750	7				
5053	10				
5356	11				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Literacy rate in % C.I	Number of cities f_i	Class Marks Xi	di = Xi -	$u_i = \frac{x_i - a}{h}$	f_i . u_i
4555	3				
5565	10				
6575	11				
7585	8				
8595	3				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Age (in years) C.I	Number of patients f_i	Class Marks Xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
515	6				
1525	11				
2535	21				
3545	23				
4555	14				
5565	5				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 =

Expenditure C.I	Number of families f.	Class Marks	di = xi - a	$u_i = \frac{x_i - a}{x_i}$	f_i . u_i
	J_i	Xi		h	
1000-1500	24				
1500-2000	40				
2000-2500	33				
2500-3000	28				
3000-3500	30				
3500-4000	22				
4000-4500	16				
4500-5000	7				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum f_i$$
 = , $\sum f_i$. \mathcal{U}_i =

Arithmetic Mean
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h =$$

Number of students C.I	Number of States f_i	Class Marks	di = xi - a	$u_i = \frac{x_i - a}{h}$	f_i . u_i
1520	3				
2025	8				
2530	9				
30-35	10				
3540	3				
4045	0				
4550	0				
5055	2				
	$\sum f_i =$				$\sum f_i \cdot u_i =$

a = , h = Length of the class interval = ,
$$\sum$$
 f_i = , \sum f_i . \mathcal{U}_i = Arithmetic Mean $\frac{-}{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$ =

Monthly consumption C.I	Number of consumers f_i	Class Marks Xi	di = Xi -	$u_i = \frac{x_i - a}{h}$	f_i . u_i
6585	4				
85105	5				
105125	13				
125145	20				
145165	14				
165185	8				
185205	4				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum$$
 f_i = , \sum f_i . \mathcal{U}_i = Arithmetic Mean $\overline{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$ =

Number of letters C.I	Number of surnames f_i	Class Marks xi	di = xi - a	$u_i = \frac{x_i - a}{h}$	$f_i \cdot u_i$
14	6				
47	30				
710	40				
1013	16				
1316	4				
1619	4				
	$\sum f_i =$				$\sum f_i \cdot \mathcal{U}_i =$

a = , h = Length of the class interval = ,
$$\sum$$
 f_i = , \sum f_i . \mathcal{U}_i = Arithmetic Mean $\frac{-}{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$ =

Mode =
$$1 + \left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) \times h$$

I = lower boundary of the modal class , h = size of the class interval (assuming all class sizes to be equal),

 f_1 = frequency of the modal class, f_0 = frequency of the class preceding the modal class

 $f_{\,2}\,$ =frequency of the class succeeding the modal class.

. A survey conducted on 20 households in a locality by a group of students resulted in the following frequency table for the number of family members in a household. Find the mode of this data

Family size C.I		Number of States	
		f_{i}	
1-3		7 (f0)	
3-5	Modal	Class 8 (f1)	
5-7		2 (f2)	
7-9		2	
9-11	•	1	
		$\sum f_i =$	

Solution: MODE =
$$l + (\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}) X h$$

Here the maximum class frequency is 8, and the class corresponding to this frequency is 3-5. So, the modal class is 3-5.

←The modal class = 3-5

lower boundary of modal class (*l*) = 3

class size (*h*) = 2

frequency of the modal class (*f*1) = 8

frequency of class preceding the modal class (*f*0) = 7

frequency of class succeeding the modal class (*f*2) = 2

Mode = I +
$$\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}$$
 X h = 3 + $\frac{8 - 7}{2 X 8 - 7 - 2}$ X 2 = 3 + $\frac{1}{7}$ X 2 = 3 + $\frac{2}{7}$ = 3 + 0.286 = 3.286

The mode of the data above is 3.286.

The marks distribution of 30 students in a mathematics examination are given in the adjacent table. Find the mode of this data. Also compare and interpret the **mode** and the **mean**.

Class interval C.I	Number of students f_i	Class Marks xi	f_i . xi
10-25	2	17.5	35.0
25-40	$3(f_0)$	32.5	97.5
40-55	$7(f_1)$	47.5	332.5
55-70	$6(f_2)$	62.5	375.0
70-85	6	77.5	465.0
85-100	6	92.5	555.0
	$\sum f_i$ =		$\sum f_i$ xi =
	30		1860.0

Solution : Arithmetic Mean =
$$X = \frac{\sum f_i xi}{\sum f_i} = \frac{1860}{30} = 62$$

MODE = I +
$$\left(\frac{f_1-f_0}{2f_1-f_0-f_2}\right)$$
 X h

Since the maximum number of students (7) have got

marks in the interval, 40-65

The modal class = 40 - 55.

The lower boundary of the modal class (l) = 40The class size (h) = 15The frequency of modal class (f1) = 7

The frequency of the class preceding the modal class $(f_0) = 3$,

the frequency of the class succeeding the modal class $(f_2) = 6$.

MODE = I +
$$(\frac{f_1 - f_0}{2f_1 - f_0 - f_2})$$
 X h = 40 + $(\frac{7 - 3}{2X7 - 6 - 3})$ X 15 = 40 + $\frac{4}{5}$ X 15 = 40 + 12 = 52.

Interpretation: The mode marks is 52. The mean marks is 62. So, the maximum number of students obtained 52 marks, while on an average a student obtained 62 ma

The following table shows the ages of the patients admitted in a hospital during a year: Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

Age (in years)	Number of patients f_i	Class Marks xi	f_i . xi
5-15	6		
15-25	11		
25-35	21		
35-45	23		
45-55	14		
55-65	5		

MODE = I +
$$\left(\frac{f_1-f_0}{2f_1-f_0-f_2}\right)$$
 X h

Since the maximum number of students ---- have got marks in the interval -----

The modal class

The lower boundary of the modal class (l) =

The class size (h) frequency of modal class (f1) =

The frequency of the class preceding the modal class (f_o) = The frequency of the class succeeding the modal class (f_2) =

MODE =
$$I + (\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}) X h$$

Interpretation: The mode marks is -----. The mean marks is -----. So, the maximum number of students obtained ----- marks, while on an average a student obtained ----- marks

2) The following data gives the information on the observed life times (in hours) of 225 electrical components Determine the modal lifetimes of the components.

Family size C.I	Number of States
	f_{i}
0-20	10
20-40	35
40-60	52
60-80	61
80-100	38
100-120	29
	$\sum f_i =$

Solution:
$$MODE = 1 + (\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}) \times h$$

Here the maximum class frequency is ----- and the class corresponding to this frequency is -----. So, the modal class is ------

The modal class = lower boundary of modal class (I) = class size (h) = frequency of the modal class (f1) = frequency of class preceding the modal class (f0) = frequency of class succeeding the modal class (f2) = $\frac{f_1-f_0}{2f_1-f_0-f_2}X$ h =

The mode of the data above is -----

3)The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure:

Age (in years) C.I	Number of patients f_i	Class Marks xi	f_i . $oldsymbol{x}$ i
1000-1500	24		
1500-2000	40		
2000-2500	33		
2500-3000	28		
3000-3500	30		
3500-4000	22		
4000-4500	16		
4500-5000	7		
	$\sum f_i =$		

Solution: Arithmetic Mean =
$$\mathbf{X} = \frac{\sum f_i \times \mathbf{x}i}{\sum f_i} = \frac{\sum f_i \times \mathbf{x}i}{\sum f_i}$$

MODE = I +
$$(\frac{f_1-f_0}{2|f_1-f_0-f_2})$$
 X h

Since the maximum number of students --- have got

marks in the interval -----

The modal class = The lower boundary of the modal class (l) =

The class size (h)

The frequency of modal class (f_1) =

The frequency of the class preceding the modal class (f_1) =

The frequency of the class preceding the modal class (f0) = The frequency of the class succeeding the modal class (f2) =

MODE = I +
$$\left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) X h = + \left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) X h$$

Interpretation: The mode marks is -----. The mean marks is -----. So, the maximum number of students obtained ----- marks, while on an average a student obtained ----- marks.

4. The following distribution gives the state-wise, teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.

Number of students C.I	Number of States f_i	Class Marks Xi	f_i . $oldsymbol{xi}$
15-20	3	281	
	_		
20-25	8		
25-30	9		
30-35	10		
35-40	3		
40-45	0		
45-50	0		
50-55	2		
	$\sum f_i =$		

Solution: Arithmetic Mean =
$$X = \frac{\sum f_i xi}{\sum f_i} =$$

MODE = I +
$$\left(\frac{f_1-f_0}{2f_1-f_0-f_2}\right)$$
 X h

Since the maximum number of students ----- have got marks in the interval ------

The modal class =

The lower boundary of the modal class (l)
The class size (h)

The frequency of modal class (f1) =

The frequency of the class preceding the modal class (f_0) =

The frequency of the class succeeding the modal class (f_2) =

MODE = I +
$$\left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) X h = + \left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_0}\right) X h = + \left(\frac{f_1 - f_0}{2 f_1 - f_0}\right) X h = + \left(\frac{f_1 - f_0}{2 f_1 - f_0}\right) X h = + \left(\frac{f_1 - f_0}{2 f_1 - f_0}\right) X h = + \left(\frac{f_1 - f_0}{2 f_1 - f_0}$$

Interpretation:

The mode marks is -----. The mean marks is -----. So, the maximum number of students obtained ----- marks, while on an average a student obtained ----- marks.

The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.

Runs	Number of
C.I	$batsmenf_{_i}$
3000-4000	4
4000-5000	18
5000-6000	9
6000-7000	7
7000-8000	6
8000-9000	3
9000-10000	1
10000-11000	1
	$\sum f_i =$

Solution: MODE =
$$l + \left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) \times h$$

Here the maximum class frequency is ----- and the class corresponding to this frequency is ------

So, the modal class is -----

The modal class lower boundary of modal class (1) class size (h)

frequency of the modal class (f1) frequency of class preceding the modal class (f0) =

frequency of class succeeding the modal class (f2) =

Mode =
$$1 + \frac{f_1 - f_0}{2 f_1 - f_0 - f_2} X h =$$

The mode of the data above

6) A student noted the number of cars passing through a spot on a road for 100 periods, each of 3 minutes, and summarised this in the table given below. Find the mode of the data.

Runs C.I	Number of batsmen f_i
0-10	7
10-20	14
20-30	13
30-40	12
40-50	20
50-60	11
60-70	15
70-80	8
	$\sum f_i =$

Solution: MODE = 1 +
$$(\frac{f_1-f_0}{2f_1-f_0-f_2})$$
 X h

Here the maximum class frequency is ----- and the class corresponding to this frequency is ------

The modal class is -----

The modal class lower boundary of modal class (1) class size (h)

frequency of the modal class (f1) frequency of class preceding the modal class (f0) frequency of class succeeding the modal class (f2) = MODE = 1 + $\frac{f_1-f_0}{2}$ X h =

The mode of the data above is -----

find the median of the following data

Class interval	Below 140	140-145	145-150	150-155	155-160	160-165
Number of student	4	7	18	11	6	5

Class interval C.I	Number of student f_i	Cumulative frequency c f
Below 140	4	4 = 4
140-145	7	4+7 =11
145-150	18	4+7+18 =29
150-155	11	4+7+18+11 =40
155-160	6	4+7+18+11+6 =46
160-165	5	4+7+18+11 +6+5 =51
	51	

Median = I +
$$\frac{\frac{n}{2} - cf}{f}$$
 x h

n/2 = 51/2 = 25.5Median class is 145-150 l = lower boundary of median class= 145n = number of observations

cf = cumulative frequency of class preceding the median class= 11 f= frequency of median class h=class size (assuming class size to be equal). = 5

Median = I +
$$\frac{\frac{n}{2} - cf}{f}$$
 x h = 145 + $\frac{25.5 - 11}{18}$ x 5 = 145 + $\frac{14.5}{18}$ X 5 = 145 + $\frac{72.5}{18}$ = 145 + 4.03 = 149.03

ZPHS N.R.PALLI **K.SREENIVASA RAJU** 9441637668 **PAGE** 126

Monthly consumption C.I	Number of consumers f_i	Cumulative frequency c f
6585	4	
85105	5	
105125	13	
125145	20	
145165	14	
165185	8	
185205	4	
	-	

Median = I + $\frac{\overline{2} - cf}{f}$ x h	
n/2 = , Median class is	
l = lower boundary of median class =	=
n = number of observations =	:
cf = cumulative frequency of class preceding the median class	s =
f = frequency of median class	=
h = class size (assuming class size to be equal).	=
$Median = I + \frac{\frac{n}{2} - cf}{f} \times h =$	

Class interval C.I	Frequency f_i	Cumulative frequency
		c f
0-10	5	
10-20	8	
20-30	20	
30-40	15	
40-50	7	
50-60	5	

Median = I + $\frac{\frac{n}{2} - cf}{f}$ x h
n/2 = , Median class is
l = lower boundary of median class = n = number of observations =
cf = cumulative frequency of class preceding the median class =
f = frequency of median class =
h = class size (assuming class size to be equal).
Median = $1 + \frac{\frac{n}{2} - cf}{\frac{n}{2} + \frac{n}{2} + \frac{n}{$

Length (in mm) C.I	Number of leaves f_i	Cumulative frequency c f
118-126	3	
127-135	5	
136-144	9	
145-153	12	
154-162	5	
163-171	4	
172-180	2	

Median = I +
$$\frac{2 - cf}{f}$$
 x h

 $\frac{1}{n/2} = \cdots = \cdots$, Median class is $\cdots = n$ = lower boundary of median class = $n = n$ = number of observations = $cf = c$ cumulative frequency of class preceding the median class = $f = f$ = frequency of median class = $f = f$ = class size (assuming class size to be equal). =

Median = I + $\frac{n}{2} - cf$ x h =

The following table gives the distribution of the life-time of 400 neon lamps, Find the median life time of a lamp.

Life time (in hours)C.I	Number of lamps f_i	Cumulative frequency c f
1500-2000	14	
2000-2500	56	
2500-3000	60	
3000-3500	86	
3500-4000	74	
4000-4500	62	
4500-5000	48	

surnames were randomly picked up from a local telephone directory and the frequencydistribution of the number of letters in the English alphabet in the surnames was obtained as follows Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.

Number of letters C.I	Number of surnames f_i	Cumulative frequency c f	
1-4			
4-7			
7-10			
10-13			
13-16			
16-19			

	Median = I + $\frac{2}{f}$ x h	
I	n/2 = = , Median class is	
1	l = lower boundary of median class =	
1	n = number of observations =	
1	cf = cumulative frequency of class preceding the median class	=
	f = frequency of median class	=
I	h = class size (assuming class size to be equal).	=
1	n	

Median = I + $\frac{\frac{n}{2} - cf}{f}$ x h =

The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

Weight (in kg) C.I	Number of students f_i	Cumulative frequency c f
40-45	2	
45-50	3	
50-55	8	
55-60	6	
60-65	6	
65-70	3	
70-75	2	

K.SREENIVASA RAJU

Find the Arithmetic mean

9441637668

Median = I + $\frac{\frac{n}{2} - cf}{f}$ x h	
n/2 = = , Median class is	
l = lower boundary of median class =	:
n = number of observations	=
cf = cumulative frequency of class preceding the median clas	s =
f = frequency of median class	=
h = class size (assuming class size to be equal).	=
$Median = I + \frac{\frac{n}{2} - cf}{f} \times h =$	

Direct Method

PAGE

S.NO	$\sum f_i$ xi	$\Sigma \ f_i$	Arithmetic Mean = $\mathbf{X} = \frac{\sum f_i \mathbf{x} \mathbf{i}}{\sum f_i}$	
1	1779	30		
2	1860	30		
3	1390	35		
4	162		8.1	
5	1152		18	
6		30	0.099	
7		80	35.37	
Deviation Mathed [or] Assumed Maca Mathed				

Deviation Method [or] Assumed Mean Method.

S.NO	а	$\sum f_i$ di	$\sum f_i$	Arithmetic Mean = $X = a + \frac{\sum f_i di}{\sum f_i}$
1	50	1390	35	
2	47.5	435	30	
3	50	-360	35	
4	275	1900	50	
5		12	30	75.9
6		-99	40	49
7	135		68	135.1
8	8.5	-18		8.32

ZPHS N.R.PALLI

	Step- deviation method								
S.NO	а	$\sum f$	^c ui	$\sum f_i$		h	Ar	Fithmetic Mean = $\mathbf{X} = \mathbf{a} + \frac{\sum f_i \mathbf{u} \mathbf{i}}{\sum f_i} \mathbf{x} \mathbf{h}$	
1	50	-3	6	3	5	10			
2	47.5	2	9	3	0	15			
3	200	-10	06	4	.5	20			
4	22	2	5	4	00	5			
5	125	4	3	2	.5	50			
6		-7	2	3	5	10		69.43	
7	3250	-23	35	2	00			2662.5	
8	32.5			3	5	5		30.625	
9	135	7	7			20		137.05	
<u> </u>		Mode					MODE =	$ \begin{array}{c} = 1 + \left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) X h \\ 1 + \left(\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}\right) X h \end{array} $	
S.NO	I	f_0	f_1	f_2	h	MOI)E =	$1 + (\frac{f_1 - f_0}{2 f_1 - f_0 - f_2}) X h$	
1	3	7	8	2	2	2			
2	40	3	7	6	1	5			
3	35	21	23	14	10	0			
4	60	52	61	38	20	0			
5	1500	24	40	33	50	00			
6		9	10	3	5	5	29.22		
7	4000	4	18	9			4608.7		
8	40	12	20		10	0	44.7		
9	125	13	20	14			135.769		
10		30	40	16	3	3	7.882		
Medi	an	1		Med	lian =	$= 1 + \frac{\frac{n}{2} - \frac{1}{f}}{f}$	cf x h		
S.NO	1	n	$\frac{n}{2}$		cf	f	h	$Median = 1 + \frac{\frac{n}{2} - cf}{f} \times h$	
1	145	51			11	18	5		
2	500		50		25	20	100		
3	125		34		22	20	20		
4	20	60			13	20	10		
5	144.5		20		17	12		146.75	
6		400	200) 1	130	86	500	3406.98	
7	7				36	40	3	8.05	
8	50	30	15			8	6	57.5	
9	46				14	14	2	46.5	

 ${\tt NOTE:FILL\:IN\:THE\:SHADED\:REGION\:WITH\:APPROPRIATE\:\:VALUES\:IN\:THE\:BOXES}$

INDIAN FAMOUS MATHEMATICIANS

Aryabhatta

BRAHMAGUPTA

BHASKARACHARYA-2

Srinivasa Aiyangar Ramanujan

Shakuntala Devi

Lakkoju Sanjeevaraya Sharma

D. R. Kaprekar

PINGLA

VARAHAMHIRA

MAHALANOBIS

MAHAVIRA

BHASKARACHARYA-1

Ramanujan Number is --

 $1729 = 10^3 +$

 $9^3 = 12^3 + 1$